High-Resolution Nanotransfer Printing of Porous Crossbar Array Using Patterned Metal Molds by Extreme-Pressure Imprint Lithography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Surface-Patterned Metal Master Molds
2.2. Replication of Polymer Patterns Using Imprinted Metal Molds
2.3. Pattern Transfer Printing
2.4. Characterization
3. Results
3.1. Nanotransfer Printing Using an Imprinted Metal Mold
3.2. Fabrication of Surface-Patterned Metal Molds via EPIL
3.3. Replication Using Imprinted Metal Master Molds
3.4. Formation of Functional Nanopatterns on Various Surfaces via T-nTP
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, H.; Shen, Z.; Pan, Z.; Kou, Z.; Liu, X.; Zhang, H.; Gu, Q.; Guan, C.; Wang, J. Hierarchical micro-nano sheet arrays of nickel–cobalt double hydroxides for high-rate Ni–Zn batteries. Adv. Sci. 2019, 6, 1802002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.; Zhang, Y.; Miao, Z.; Wu, T.; Zhang, Z.; Yang, X. Micro/nano-structure Co3O4 as high capacity anode materials for lithium-ion batteries and the effect of the void volume on electrochemical performance. J. Power Sources 2014, 248, 289–295. [Google Scholar] [CrossRef]
- Huang, G.; Xu, S.; Xu, Z.; Sun, H.; Li, L. Core–shell ellipsoidal MnCo2O4 anode with micro-/nano-structure and concentration gradient for lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 21325–21334. [Google Scholar] [CrossRef] [PubMed]
- Palacin, M.R. Recent advances in rechargeable battery materials: A chemist’s perspective. Chem. Soc. Rev. 2009, 38, 2565–2575. [Google Scholar] [CrossRef]
- Jung, Y.; Ahn, J.; Kim, J.S.; Ha, J.H.; Shim, J.; Cho, H.; Oh, Y.S.; Yoon, Y.J.; Nam, Y.; Oh, I.K. Spherical Micro/Nano Hierarchical Structures for Energy and Water Harvesting Devices. Small Methods 2022, 6, 2200248. [Google Scholar] [CrossRef]
- Muthu, M.; Pandey, R.; Wang, X.; Chandrasekhar, A.; Palani, I.; Singh, V. Enhancement of triboelectric nanogenerator output performance by laser 3D-Surface pattern method for energy harvesting application. Nano Energy 2020, 78, 105205. [Google Scholar] [CrossRef]
- Shi, Q.; He, T.; Lee, C. More than energy harvesting–Combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems. Nano Energy 2019, 57, 851–871. [Google Scholar] [CrossRef]
- Park, T.W.; Park, W.I. Switching-Modulated Phase Change Memory Realized by Si-Containing Block Copolymers. Small 2021, 17, 2105078. [Google Scholar] [CrossRef]
- Noé, P.; Vallée, C.; Hippert, F.; Fillot, F.; Raty, J.-Y. Phase-change materials for non-volatile memory devices: From technological challenges to materials science issues. Semicond. Sci. Technol. 2017, 33, 013002. [Google Scholar] [CrossRef]
- Su, M.; Yang, Z.; Liao, L.; Zou, X.; Ho, J.C.; Wang, J.; Wang, J.; Hu, W.; Xiao, X.; Jiang, C. Side-Gated In2O3 Nanowire Ferroelectric FETs for High-Performance Nonvolatile Memory Applications. Adv. Sci. 2016, 3, 1600078. [Google Scholar] [CrossRef] [Green Version]
- Miyake, J.; Ogawa, Y.; Tanaka, T.; Ahn, J.; Oka, K.; Oyaizu, K.; Miyatake, K. Rechargeable proton exchange membrane fuel cell containing an intrinsic hydrogen storage polymer. Comm. Chem. 2020, 3, 138. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, V.; Lee, A.S.; Park, E.J.; Maurya, S.; Baca, E.D.; Fujimoto, C.; Hibbs, M.; Matanovic, I.; Kerres, J.; Kim, Y.S. Synergistically integrated phosphonated poly (pentafluorostyrene) for fuel cells. Nat. Mater. 2020, 20, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Orilall, M.C.; Wiesner, U. Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: Solar cells, batteries, and fuel cells. Chem. Soc. Rev. 2011, 40, 520–535. [Google Scholar] [CrossRef]
- Kim, Y.S.; Wang, F.; Hickner, M.; McCartney, S.; Hong, Y.T.; Harrison, W.; Zawodzinski, T.A.; McGrath, J.E. Effect of acidification treatment and morphological stability of sulfonated poly (arylene ether sulfone) copolymer proton-exchange membranes for fuel-cell use above 100 C. J. Polym. Sci. Pt. B-Polym. Phys. 2003, 41, 2816–2828. [Google Scholar] [CrossRef]
- Sun, Y.-K.; Chen, Z.; Noh, H.-J.; Lee, D.-J.; Jung, H.-G.; Ren, Y.; Wang, S.; Yoon, C.S.; Myung, S.-T.; Amine, K. Nanostructured high-energy cathode materials for advanced lithium batteries. Nat. Mater. 2012, 11, 942–947. [Google Scholar] [CrossRef]
- Kumar, P.; Kim, K.-H.; Bansal, V.; Kumar, P. Nanostructured materials: A progressive assessment and future direction for energy device applications. Coord. Chem. Rev. 2017, 353, 113–141. [Google Scholar]
- Rühe, J. And there was light: Prospects for the creation of micro-and nanostructures through maskless photolithography. ACS Nano 2017, 11, 8537–8541. [Google Scholar]
- Wu, M.-H.; Whitesides, G.M. Fabrication of two-dimensional arrays of microlenses and their applications in photolithography. J. Micromech. Microeng. 2002, 12, 747. [Google Scholar] [CrossRef]
- Levenson, M.D.; Viswanathan, N.; Simpson, R.A. Improving resolution in photolithography with a phase-shifting mask. IEEE Trans. Electron Devices 1982, 29, 1828–1836. [Google Scholar] [CrossRef]
- Zhang, N.; Sun, W.; Rodrigues, S.P.; Wang, K.; Gu, Z.; Wang, S.; Cai, W.; Xiao, S.; Song, Q. Highly reproducible organometallic halide perovskite microdevices based on top-down lithography. Adv. Mater. 2017, 29, 1606205. [Google Scholar] [CrossRef]
- Li, L.; Liu, X.; Pal, S.; Wang, S.; Ober, C.K.; Giannelis, E.P. Extreme ultraviolet resist materials for sub-7 nm patterning. Chem. Soc. Rev. 2017, 46, 4855–4866. [Google Scholar] [CrossRef]
- Magin, C.M.; Anseth, K.S. In situ control of cell substrate microtopographies using photolabile hydrogels. Small 2013, 9, 578–584. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, L.; Leydecker, T.; Samorì, P. Direct photolithography on molecular crystals for high performance organic optoelectronic devices. J. Am. Chem. Soc. 2018, 140, 6984–6990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acuautla, M.; Bernardini, S.; Gallais, L.; Fiorido, T.; Patout, L.; Bendahan, M. Ozone flexible sensors fabricated by photolithography and laser ablation processes based on ZnO nanoparticles. Sens. Actuator B-Chem. 2014, 203, 602–611. [Google Scholar] [CrossRef]
- Guo, C.; Liu, K.; Zhang, T.; Sun, P.; Liang, L. Development of flexible photothermal superhydrophobic microarray by photolithography technology for anti-icing and deicing. Prog. Org. Coat. 2023, 182, 107675. [Google Scholar] [CrossRef]
- Torretti, F.; Sheil, J.; Schupp, R.; Basko, M.; Bayraktar, M.; Meijer, R.; Witte, S.; Ubachs, W.; Hoekstra, R.; Versolato, O. Prominent radiative contributions from multiply-excited states in laser-produced tin plasma for nanolithography. Nat. Commun. 2020, 11, 9235. [Google Scholar] [CrossRef]
- Mojarad, N.; Gobrecht, J.; Ekinci, Y. Beyond EUV lithography: A comparative study of efficient photoresists’ performance. Sci. Rep. 2015, 5, 2334. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Hu, Y.; Xuan, Y.; Li, J.; Yang, Y.; Martinez, R.V.; Li, C.; Luo, J.; Qi, M.; Cheng, G.J. Large-scale nanoshaping of ultrasmooth 3D crystalline metallic structures. Science 2014, 346, 1352–1356. [Google Scholar] [CrossRef]
- Kim, D.H.; Lee, D.W.; Oh, J.Y.; Won, J.; Seo, D.-S. Nanopatterning of Polymer/gallium oxide thin films by UV-curing nanoimprint lithography for liquid crystal alignment. ACS Appl. Nano Mater. 2022, 5, 1435–1445. [Google Scholar] [CrossRef]
- Lee, S.W.; Oh, B.K.; Sanedrin, R.G.; Salaita, K.; Fujigaya, T.; Mirkin, C.A. Biologically active protein nanoarrays generated using parallel dip-pen nanolithography. Adv. Mater. 2006, 18, 1133–1136. [Google Scholar]
- Lee, K.-B.; Park, S.-J.; Mirkin, C.A.; Smith, J.C.; Mrksich, M. Protein nanoarrays generated by dip-pen nanolithography. Science 2002, 295, 1702–1705. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Sun, Y.; Zhong, L.; Shao, W.; Huang, J.; Liang, F.; Cui, Z.; Liang, Z.; Jiang, L.; Chi, L. Scalable fabrication of multiplexed plasmonic nanoparticle structures based on AFM lithography. Small 2016, 12, 5818–5825. [Google Scholar] [CrossRef]
- Hu, S.; Chen, J.; Yu, T.; Zeng, Y.; Wang, S.; Guo, X.; Yang, G.; Li, Y. A novel dual-tone molecular glass resist based on adamantane derivatives for electron beam lithography. J. Mater. Chem. C 2022, 10, 9858–9866. [Google Scholar] [CrossRef]
- Dieleman, C.D.; van der Burgt, J.; Thakur, N.; Garnett, E.C.; Ehrler, B. Direct patterning of CsPbBr3 nanocrystals via electron-beam lithography. ACS Appl. Energy Mater. 2022, 5, 1672–1680. [Google Scholar] [CrossRef]
- Park, T.W.; Kang, Y.L.; Byun, M.; Hong, S.W.; Ahn, Y.-S.; Lee, J.; Park, W.I. Controlled self-assembly of block copolymers in printed sub-20 nm cross-bar structures. Nanoscale Adv. 2021, 3, 5083–5089. [Google Scholar] [CrossRef]
- Park, T.W.; Jung, H.; Park, J.; Ahn, Y.-S.; Hong, S.W.; Lee, J.; Lee, J.-H.; Park, W.I. Topographically designed hybrid nanostructures via nanotransfer printing and block copolymer self-assembly. Nanoscale 2021, 13, 11161–11168. [Google Scholar] [CrossRef]
- Jung, H.; Shin, W.H.; Park, T.W.; Choi, Y.J.; Yoon, Y.J.; Park, S.H.; Lim, J.-H.; Kwon, J.-D.; Lee, J.W.; Kwon, S.-H.; et al. Hierarchical multi-level block copolymer patterns by multiple self-assembly. Nanoscale 2019, 11, 8433–8441. [Google Scholar] [CrossRef]
- Ross, C.A.; Berggren, K.K.; Cheng, J.Y.; Jung, Y.S.; Chang, J.B. Three-dimensional nanofabrication by block copolymer self-assembly. Adv. Mater. 2014, 26, 4386–4396. [Google Scholar] [CrossRef]
- Bosworth, J.K.; Paik, M.Y.; Ruiz, R.; Schwartz, E.L.; Huang, J.Q.; Ko, A.W.; Smilgies, D.-M.; Black, C.T.; Ober, C.K. Control of self-assembly of lithographically patternable block copolymer films. ACS Nano 2008, 2, 1396–1402. [Google Scholar] [CrossRef]
- Jung, D.S.; Bang, J.; Park, T.W.; Lee, S.H.; Jung, Y.K.; Byun, M.; Cho, Y.-R.; Kim, K.H.; Seong, G.H.; Park, W.I. Pattern formation of metal–oxide hybrid nanostructures via the self-assembly of di-block copolymer blends. Nanoscale 2019, 11, 18559–18567. [Google Scholar] [CrossRef]
- Tiefenauer, R.F.; Tybrandt, K.; Aramesh, M.; Voros, J. Fast and versatile multiscale patterning by combining template-stripping with nanotransfer printing. ACS Nano 2018, 12, 2514–2520. [Google Scholar] [CrossRef] [PubMed]
- Stuart, C.; Park, H.K.; Chen, Y. Fabrication of a 3D nanoscale crossbar circuit by nanotransfer-printing lithography. Small 2010, 6, 1663–1668. [Google Scholar] [CrossRef] [PubMed]
- Jiao, L.; Fan, B.; Xian, X.; Wu, Z.; Zhang, J.; Liu, Z. Creation of nanostructures with poly (methyl methacrylate)-mediated nanotransfer printing. J. Am. Chem. Soc. 2008, 130, 12612–12613. [Google Scholar] [CrossRef]
- Hines, D.; Mezhenny, S.; Breban, M.; Williams, E.; Ballarotto, V.; Esen, G.; Southard, A.; Fuhrer, M. Nanotransfer printing of organic and carbon nanotube thin-film transistors on plastic substrates. Appl. Phys. Lett. 2005, 86, 163101. [Google Scholar] [CrossRef] [Green Version]
- Meitl, M.A.; Zhu, Z.-T.; Kumar, V.; Lee, K.J.; Feng, X.; Huang, Y.Y.; Adesida, I.; Nuzzo, R.G.; Rogers, J.A. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 2006, 5, 33–38. [Google Scholar] [CrossRef]
- Aghajamali, M.; Cheong, I.T.; Veinot, J.G. Water-Assisted Transfer Patterning of Nanomaterials. Langmuir 2018, 34, 9418–9423. [Google Scholar] [CrossRef]
- Jeong, J.W.; Yang, S.R.; Hur, Y.H.; Kim, S.W.; Baek, K.M.; Yim, S.; Jang, H.-I.; Park, J.H.; Lee, S.Y.; Park, C.-O. High-resolution nanotransfer printing applicable to diverse surfaces via interface-targeted adhesion switching. Nat. Commun. 2014, 5, 5387. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Li, Y.; Lü, C.; Song, J.; Saeidpouraza, R.; Fang, B.; Zhong, Y.; Ferreira, P.M.; Rogers, J.A.; Huang, Y. Thermo-mechanical modeling of laser-driven non-contact transfer printing: Two-dimensional analysis. Soft Matter 2012, 8, 7122–7127. [Google Scholar] [CrossRef]
- Nam, T.W.; Kim, M.; Wang, Y.; Kim, G.Y.; Choi, W.; Lim, H.; Song, K.M.; Choi, M.-J.; Jeon, D.Y.; Grossman, J.C. Thermodynamic-driven polychromatic quantum dot patterning for light-emitting diodes beyond eye-limiting resolution. Nat. Commun. 2020, 11, 3040. [Google Scholar] [CrossRef] [PubMed]
- Park, T.W.; Byun, M.; Jung, H.; Lee, G.R.; Park, J.H.; Jang, H.-I.; Lee, J.W.; Kwon, S.H.; Hong, S.; Lee, J.-H.; et al. Thermally assisted nanotransfer printing with sub–20-nm resolution and 8-inch wafer scalability. Sci. Adv. 2020, 6, eabb6462. [Google Scholar] [CrossRef]
- Park, W.I.; Park, T.W.; Choi, Y.J.; Lee, S.; Ryu, S.; Liang, X.; Jung, Y.S. Extreme-Pressure Imprint Lithography for Heat and Ultraviolet-Free Direct Patterning of Rigid Nanoscale Features. ACS Nano 2021, 15, 10464–10471. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, T.W.; Kang, Y.L.; Kim, Y.N.; Park, W.I. High-Resolution Nanotransfer Printing of Porous Crossbar Array Using Patterned Metal Molds by Extreme-Pressure Imprint Lithography. Nanomaterials 2023, 13, 2335. https://doi.org/10.3390/nano13162335
Park TW, Kang YL, Kim YN, Park WI. High-Resolution Nanotransfer Printing of Porous Crossbar Array Using Patterned Metal Molds by Extreme-Pressure Imprint Lithography. Nanomaterials. 2023; 13(16):2335. https://doi.org/10.3390/nano13162335
Chicago/Turabian StylePark, Tae Wan, Young Lim Kang, Yu Na Kim, and Woon Ik Park. 2023. "High-Resolution Nanotransfer Printing of Porous Crossbar Array Using Patterned Metal Molds by Extreme-Pressure Imprint Lithography" Nanomaterials 13, no. 16: 2335. https://doi.org/10.3390/nano13162335
APA StylePark, T. W., Kang, Y. L., Kim, Y. N., & Park, W. I. (2023). High-Resolution Nanotransfer Printing of Porous Crossbar Array Using Patterned Metal Molds by Extreme-Pressure Imprint Lithography. Nanomaterials, 13(16), 2335. https://doi.org/10.3390/nano13162335