Recent Advances in Fabrication of Durable, Transparent, and Superhydrophobic Surfaces
Abstract
:1. Introduction
2. Superhydrophobic Surfaces
2.1. Contact Angle on Solid Surfaces
2.2. Classic Wetting Models
3. Transparency, Durability, and Superhydrophobicity
4. Fabrication of Transparent Superhydrophobic Surface
4.1. Top-Down Method
4.2. Bottom-Up Technique
4.3. Robust Armor Strategy
5. Durability Evaluation Protocols
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shao, Y.; Zhao, J.; Fan, Y.; Wan, Z.; Lu, L.; Zhang, Z.; Ming, W.; Ren, L. Shape memory superhydrophobic surface with switchable transition between “Lotus Effect” to “Rose Petal Effect”. Chem. Eng. J. 2020, 382, 122989. [Google Scholar] [CrossRef]
- Xiao, Y.; Huang, W.; Tsui, C.P.; Wang, G.; Tang, C.Y.; Zhong, L. Ultrasonic atomization based fabrication of bio-inspired micro-nano-binary particles for superhydrophobic composite coatings with lotus/petal effect. Compos. Part B 2017, 121, 92–98. [Google Scholar] [CrossRef]
- Ensikat, H.J.; Ditsche-Kuru, P.; Neinhuis, C.; Barthlott, W. Superhydrophobicity in perfection: The outstanding properties of the lotus leaf. Beilstein J. Nanotechnol. 2011, 2, 152–161. [Google Scholar] [CrossRef]
- Sun, H.; Li, T.; Lei, F.; Lyu, S.; Yang, Y.; Li, B.; Han, H.; Wu, B.; Huang, J.; Zhang, C.; et al. Fast Self-Healing Superhydrophobic Thermal Energy Storage Coatings Fabricated by Bio-Based Beeswax and Artificially Cultivated Diatom Frustules. ACS Appl. Mater. Interfaces 2021, 13, 48088–48100. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Luo, W.; Sun, H.; Xu, J.; Liu, Y.; Cheng, X. Superhydrophobic coatings fabricated by paraffin wax and silica nanoparticles with enhanced adhesion stability. Mater. Lett. 2021, 309, 131316. [Google Scholar] [CrossRef]
- Yu, S.; Guo, Z.; Liu, W. Biomimetic transparent and superhydrophobic coatings: From nature and beyond nature. Chem. Commun. 2015, 51, 1775–1794. [Google Scholar] [CrossRef]
- Chen, C.; Weng, D.; Chen, S.; Mahmood, A.; Wang, J. Development of Durable, Fluorine-free, and Transparent Superhydrophobic Surfaces for Oil/Water Separation. ACS Omega 2019, 4, 6947–6954. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, Q.; Lyons, A.M. Durable, optically transparent, superhydrophobic polymer films. Appl. Surf. Sci. 2019, 470, 187–195. [Google Scholar] [CrossRef]
- Foorginezhad, S.; Zerafat, M.M. Fabrication of stable fluorine-free superhydrophobic fabrics for anti-adhesion and self-cleaning properties. Appl. Surf. Sci. 2019, 464, 458–471. [Google Scholar] [CrossRef]
- Liu, J.; Fang, X.; Zhu, C.; Xing, X.; Cui, G.; Li, Z. Fabrication of superhydrophobic coatings for corrosion protection by electrodeposition: A comprehensive review. Colloids Surf. A 2020, 607, 125498. [Google Scholar] [CrossRef]
- Esmaeili, A.R.; Mir, N.; Mohammadi, R. A facile, fast, and low-cost method for fabrication of micro/nano-textured superhydrophobic surfaces. J. Colloid Interface Sci. 2020, 573, 317–327. [Google Scholar] [CrossRef]
- Siddiqui, A.R.; Li, W.; Wang, F.; Ou, J.; Amirfazli, A. One-step fabrication of transparent superhydrophobic surface. Appl. Surf. Sci. 2021, 542, 148534. [Google Scholar] [CrossRef]
- Li, J.; Jing, Z.; Yang, Y.; Wang, Q.; Lei, Z. From Cassie state to Gecko state: A facile hydrothermal process for the fabrication of superhydrophobic surfaces with controlled sliding angles on zinc substrates. Surf. Coat. Technol. 2014, 258, 973–978. [Google Scholar] [CrossRef]
- Gao, L.; McCarthy, T.J. Wetting 101°. Langmuir 2009, 25, 14105–14115. [Google Scholar] [CrossRef] [PubMed]
- Latthe, S.S.; Sudhagar, P.; Devadoss, A.; Kumar, A.M.; Liu, S.; Terashima, C.; Nakata, K.; Fujishima, A. A mechanically bendable superhydrophobic steel surface with self-cleaning and corrosion-resistant properties. J. Mater. Chem. A 2015, 3, 14263–14271. [Google Scholar] [CrossRef]
- Li, M.; Huang, X.; Luo, W.; Chen, Y.; Han, F.; Cheng, X. Thermal degradation behavior of self-assembled monolayer surfactant on silicon substrate. J. Vac. Sci. Technol. B 2020, 38, 032602. [Google Scholar] [CrossRef]
- Cho, K.L.; Liaw, I.I.; Wu, A.H.F.; Lamb, R.N. Influence of Roughness on a Transparent Superhydrophobic Coating. J. Phys. Chem. C 2010, 114, 11228–11233. [Google Scholar] [CrossRef]
- Long, M.; Peng, S.; Chen, J.; Yang, X.; Deng, W. A new replication method for fabricating hierarchical polymer surfaces with robust superhydrophobicity and highly improved oleophobicity. Colloids Surf. A 2016, 507, 7–17. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Bhushan, B.; Jung, Y.C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater Sci. 2011, 56, 1–108. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, D.; Li, Y.; Zhang, J.; Ye, S.; Cui, J.; Chen, L.; Wang, Z.; Butt, H.-J.; Vollmer, D.; et al. Surface charge printing for programmed droplet transport. Nat. Mater. 2019, 18, 936–941. [Google Scholar] [CrossRef]
- Li, M.; Chen, Y.; Luo, W.; Cheng, X. Durable and Flexible Hydrophobic Surface with a Micropatterned Composite Metal–Polymer Structure. Langmuir 2021, 37, 5838–5845. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Jones, A.K.; Sikka, V.K.; Wu, J.; Gao, D. Anti-Icing Superhydrophobic Coatings. Langmuir 2009, 25, 12444–12448. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhan, Y.; Yu, S. Applications of superhydrophobic coatings in anti-icing: Theory, mechanisms, impact factors, challenges and perspectives. Prog. Org. Coat. 2021, 152, 106117. [Google Scholar] [CrossRef]
- Kulinich, S.A.; Farhadi, S.; Nose, K.; Du, X.W. Superhydrophobic Surfaces: Are They Really Ice-Repellent? Langmuir 2011, 27, 25–29. [Google Scholar] [CrossRef]
- Shibuichi, S.; Onda, T.; Satoh, N.; Tsujii, K. Super Water-Repellent Surfaces Resulting from Fractal Structure. J. Phys. Chem. 1996, 100, 19512–19517. [Google Scholar] [CrossRef]
- Liravi, M.; Pakzad, H.; Moosavi, A.; Nouri-Borujerdi, A. A comprehensive review on recent advances in superhydrophobic surfaces and their applications for drag reduction. Prog. Org. Coat. 2020, 140, 105537. [Google Scholar] [CrossRef]
- Ou, J.; Perot, B.; Rothstein, J.P. Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys. Fluids 2004, 16, 4635–4643. [Google Scholar] [CrossRef]
- He, Z.; Zeng, Y.; Zhou, M.; Min, Y.; Shen, X.; Xu, Q. Superhydrophobic Films with Enhanced Corrosion Resistance and Self-Cleaning Performance on an Al Alloy. Langmuir 2021, 37, 524–541. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Chen, Z.; Ben, K.; Guan, Z. A self-modification approach toward transparent superhydrophobic glass for rainproofing and superhydrophobic fiberglass mesh for oil-water separation. Appl. Surf. Sci. 2016, 360, 789–797. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Shi, L.; Li, J.; Xin, Y.; Yang, T.; Guo, Z. Transparent superhydrophobic/superhydrophilic coatings for self-cleaning and anti-fogging. Appl. Phys. Lett. 2012, 101, 033701. [Google Scholar] [CrossRef]
- Deng, X.; Mammen, L.; Zhao, Y.; Lellig, P.; Müllen, K.; Li, C.; Butt, H.-J.; Vollmer, D. Transparent, Thermally Stable and Mechanically Robust Superhydrophobic Surfaces Made from Porous Silica Capsules. Adv. Mater. 2011, 23, 2962–2965. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, U.; Al-Sulaiman, F.A.; Yilbas, B.S.; Salhi, B.; Ahmed, S.H.A.; Hossain, M.K. Superhydrophobic surfaces with antireflection properties for solar applications: A critical review. Sol. Energy Mater. Sol. Cells 2016, 157, 604–623. [Google Scholar] [CrossRef]
- Nomeir, B.; Lakhouil, S.; Boukheir, S.; Ali, M.A.; Naamane, S. Recent progress on transparent and self-cleaning surfaces by superhydrophobic coatings deposition to optimize the cleaning process of solar panels. Sol. Energy Mater. Sol. Cells 2023, 257, 112347. [Google Scholar] [CrossRef]
- Cherupurakal, N.; Mozumder, M.S.; Mourad, A.-H.I.; Lalwani, S. Recent advances in superhydrophobic polymers for antireflective self-cleaning solar panels. Renew. Sustain. Energy Rev. 2021, 151, 111538. [Google Scholar] [CrossRef]
- Dalawai, S.P.; Saad Aly, M.A.; Latthe, S.S.; Xing, R.; Sutar, R.S.; Nagappan, S.; Ha, C.-S.; Kumar Sadasivuni, K.; Liu, S. Recent Advances in durability of superhydrophobic self-cleaning technology: A critical review. Prog. Org. Coat. 2020, 138, 105381. [Google Scholar] [CrossRef]
- Cohen, N.; Dotan, A.; Dodiuk, H.; Kenig, S. Superhydrophobic Coatings and Their Durability. Mater. Manuf. Process. 2016, 31, 1143–1155. [Google Scholar] [CrossRef]
- Fei, L.; He, Z.; LaCoste, J.D.; Nguyen, T.H.; Sun, Y. A Mini Review on Superhydrophobic and Transparent Surfaces. Chem. Rec. 2020, 20, 1257–1268. [Google Scholar] [CrossRef]
- Young, T. An essay on the cohesion of fluids. Abstr. Pap. Print. Philos. Trans. R. Soc. Lond. 1832, 1, 171–172. [Google Scholar] [CrossRef]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Niskanen, I.; Forsberg, V.; Zakrisson, D.; Reza, S.; Hummelgård, M.; Andres, B.; Fedorov, I.; Suopajärvi, T.; Liimatainen, H.; Thungström, G. Determination of nanoparticle size using Rayleigh approximation and Mie theory. Chem. Eng. Sci. 2019, 201, 222–229. [Google Scholar] [CrossRef]
- Karunakaran, R.G.; Lu, C.-H.; Zhang, Z.; Yang, S. Highly Transparent Superhydrophobic Surfaces from the Coassembly of Nanoparticles (≤100 nm). Langmuir 2011, 27, 4594–4602. [Google Scholar] [CrossRef]
- Li, J.; Huang, Z.; Wang, F.; Yan, X.; Wei, Y. One-step preparation of transparent superhydrophobic coatings using atmospheric arc discharge. Appl. Phys. Lett. 2015, 107, 051603. [Google Scholar] [CrossRef]
- Zhang, C.; Kalulu, M.; Sun, S.; Jiang, P.; Zhou, X.; Wei, Y.; Jiang, Y. Environmentally safe, durable and transparent superhydrophobic coating prepared by one-step spraying. Colloids Surf. A 2019, 570, 147–155. [Google Scholar] [CrossRef]
- Ke, C.; Zhang, C.; Wu, X.; Jiang, Y. Highly transparent and robust superhydrophobic coatings fabricated via a facile sol-gel process. Thin Solid Film. 2021, 723, 138583. [Google Scholar] [CrossRef]
- Hu, Y.; Li, G.; Cai, J.; Zhang, C.; Li, J.; Chu, J.; Huang, W. Facile fabrication of functional PDMS surfaces with tunable wettablity and high adhesive force via femtosecond laser textured templating. AIP Adv. 2014, 4, 127141. [Google Scholar] [CrossRef]
- Wang, H.; He, M.; Liu, H.; Guan, Y. One-Step Fabrication of Robust Superhydrophobic Steel Surfaces with Mechanical Durability, Thermal Stability, and Anti-icing Function. ACS Appl. Mater. Interfaces 2019, 11, 25586–25594. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Han, J.; Cai, M.; Liu, W.; Luo, X.; Zhang, H.; Zhong, M. Durable and robust transparent superhydrophobic glass surfaces fabricated by a femtosecond laser with exceptional water repellency and thermostability. J. Mater. Chem. A 2018, 6, 9049–9056. [Google Scholar] [CrossRef]
- Maurer, J.A.; Miller, M.J.; Bartolucci, S.F. Self-cleaning superhydrophobic nanocomposite surfaces generated by laser pulse heating. J. Colloid Interface Sci. 2018, 524, 204–208. [Google Scholar] [CrossRef]
- Li, M.; Chen, Y.; Luo, W.; Cheng, X. Interfacial Interactions during Demolding in Nanoimprint Lithography. Micromachines 2021, 12, 349. [Google Scholar] [CrossRef]
- Kim, S.; Kim, D.H.; Choi, S.H.; Kim, W.Y.; Kwon, S.; Cho, Y.T. Effect of surface pattern morphology on inducing superhydrophobicity. Appl. Surf. Sci. 2020, 513, 145847. [Google Scholar] [CrossRef]
- Lv, L.; Liu, H.; Zhang, W.; Chen, J.; Liu, Z. Facile UV-curable fabrication of robust, anti-icing superhydrophobic coatings based on polyurethane. Mater. Lett. 2020, 258, 126653. [Google Scholar] [CrossRef]
- Gao, W.; Ma, F.; Yin, Y.; Li, J. Robust and durable transparent superhydrophobic F-TNTs/TiN coating fabricated by structure tuning on surface of TiN hard coating. Appl. Surf. Sci. 2023, 613, 155967. [Google Scholar] [CrossRef]
- Yong, J.; Chen, F.; Yang, Q.; Zhang, D.; Bian, H.; Du, G.; Si, J.; Meng, X.; Hou, X. Controllable Adhesive Superhydrophobic Surfaces Based on PDMS Microwell Arrays. Langmuir 2013, 29, 3274–3279. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Hwang, H.J.; Cho, H.; Choi, D.; Hwang, W. Repeatable replication method with liquid infiltration to fabricate robust, flexible, and transparent, anti-reflective superhydrophobic polymer films on a large scale. Chem. Eng. J. 2018, 350, 225–232. [Google Scholar] [CrossRef]
- Rin Yu, C.; Shanmugasundaram, A.; Lee, D.-W. Nanosilica coated polydimethylsiloxane mushroom structure: A next generation flexible, transparent, and mechanically durable superhydrophobic thin film. Appl. Surf. Sci. 2022, 583, 152500. [Google Scholar] [CrossRef]
- Chen, J.Y.; Chang, W.L.; Huang, C.K.; Sun, K.W. Biomimetic nanostructured antireflection coating and its application on crystalline silicon solar cells. Opt. Express 2011, 19, 14411–14419. [Google Scholar] [CrossRef]
- Wang, M.; Gu, X.; Ma, P.; Zhang, W.; Yu, D.; Chang, P.; Chen, X.; Li, D. Microstructured superhydrophobic anti-reflection films for performance improvement of photovoltaic devices. Mater. Res. Bull. 2017, 91, 208–213. [Google Scholar] [CrossRef]
- Tulli, D.; Hart, S.D.; Mazumder, P.; Carrilero, A.; Tian, L.; Koch, K.W.; Yongsunthon, R.; Piech, G.A.; Pruneri, V. Monolithically Integrated Micro- and Nanostructured Glass Surface with Antiglare, Antireflection, and Superhydrophobic Properties. ACS Appl. Mater. Interfaces 2014, 6, 11198–11203. [Google Scholar] [CrossRef]
- Yun, H.-W.; Choi, G.-M.; Woo, H.K.; Oh, S.J.; Hong, S.-H. Superhydrophobic, antireflective, flexible hard coatings with mechanically ultra-resilient moth-eye structure for foldable displays. Curr. Appl Phys. 2020, 20, 1163–1170. [Google Scholar] [CrossRef]
- Li, M.; Chen, Y.; Luo, W.; Cheng, X. Nanoindentation Behavior of UV-Curable Resist and Its Correlation with Patterning Defect in Nanoimprint Lithography. J. Micromech. Microeng. 2020, 30, 065010. [Google Scholar] [CrossRef]
- Li, M.; Chen, Y.; Luo, W.; Cheng, X. Demolding force dependence on mold surface modifications in UV nanoimprint lithography. Microelectron. Eng. 2021, 236, 111470. [Google Scholar] [CrossRef]
- Ji, Z.; Liu, Y.; Du, F. Rational design of superhydrophobic, transparent hybrid coating with superior durability. Prog. Org. Coat. 2021, 157, 106294. [Google Scholar] [CrossRef]
- Zhang, C.; Cheng, L.; Zhang, M.; Long, Z.; Meng, F.; Lin, H. Robust and durable transparent superhydrophobic boehmite (γ-AlOOH) film by a simple hydrothermal method. Ceram. Int. 2021, 47, 11694–11701. [Google Scholar] [CrossRef]
- Elzaabalawy, A.; Meguid, S.A. Development of novel superhydrophobic coatings using siloxane-modified epoxy nanocomposites. Chem. Eng. J. 2020, 398, 125403. [Google Scholar] [CrossRef]
- Tahmassebi, N.; Moradian, S.; Ramezanzadeh, B.; Khosravi, A.; Behdad, S. Effect of addition of hydrophobic nano silica on viscoelastic properties and scratch resistance of an acrylic/melamine automotive clearcoat. Tribol. Int. 2010, 43, 685–693. [Google Scholar] [CrossRef]
- Iline-Vul, T.; Bretler, S.; Cohen, S.; Perelshtein, I.; Perkas, N.; Gedanken, A.; Margel, S. Engineering of superhydrophobic silica microparticles and thin coatings on polymeric films by ultrasound irradiation. Mater. Today Chem. 2021, 21, 100520. [Google Scholar] [CrossRef]
- Zhao, X.; Soper, S.A.; Murphy, M.C. A high-adhesion binding strategy for silica nanoparticle-based superhydrophobic coatings. Colloids Surf. A 2021, 625, 126810. [Google Scholar] [CrossRef]
- Gong, X.; He, S. Highly Durable Superhydrophobic Polydimethylsiloxane/Silica Nanocomposite Surfaces with Good Self-Cleaning Ability. ACS Omega 2020, 5, 4100–4108. [Google Scholar] [CrossRef]
- Schaeffer, D.A.; Polizos, G.; Smith, D.B.; Lee, D.F.; Hunter, S.R.; Datskos, P.G. Optically transparent and environmentally durable superhydrophobic coating based on functionalized SiO2 nanoparticles. Nanotechnol. 2015, 26, 055602. [Google Scholar] [CrossRef]
- Yanagisawa, T.; Nakajima, A.; Sakai, M.; Kameshima, Y.; Okada, K. Preparation and abrasion resistance of transparent super-hydrophobic coating by combining crater-like silica films with acicular boehmite powder. Mater. Sci. Eng. B 2009, 161, 36–39. [Google Scholar] [CrossRef]
- Luo, G.; Jin, Z.; Dong, Y.; Huang, J.; Zhang, R.; Wang, J.; Li, M.; Shen, Q.; Zhang, L. Preparation and performance enhancements of wear-resistant, transparent PU/SiO2 superhydrophobic coating. Surf. Eng. 2018, 34, 139–145. [Google Scholar] [CrossRef]
- Li, Y.; Men, X.; Zhu, X.; Ge, B.; Chu, F.; Zhang, Z. One-step spraying to fabricate nonfluorinated superhydrophobic coatings with high transparency. J. Mater. Sci. 2016, 51, 2411–2419. [Google Scholar] [CrossRef]
- Celik, N.; Torun, I.; Ruzi, M.; Esidir, A.; Onses, M.S. Fabrication of robust superhydrophobic surfaces by one-step spray coating: Evaporation driven self-assembly of wax and nanoparticles into hierarchical structures. Chem. Eng. J. 2020, 396, 125230. [Google Scholar] [CrossRef]
- Torun, I.; Celik, N.; Hancer, M.; Es, F.; Emir, C.; Turan, R.; Onses, M.S. Water Impact Resistant and Antireflective Superhydrophobic Surfaces Fabricated by Spray Coating of Nanoparticles: Interface Engineering via End-Grafted Polymers. Macromol. 2018, 51, 10011–10020. [Google Scholar] [CrossRef]
- Ebert, D.; Bhushan, B. Transparent, Superhydrophobic, and Wear-Resistant Coatings on Glass and Polymer Substrates Using SiO2, ZnO, and ITO Nanoparticles. Langmuir 2012, 28, 11391–11399. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Xiao, Z.; Wang, S.; Yu, X. Fabrication of robust and repairable superhydrophobic coatings by an immersion method. Chem. Eng. J. 2019, 369, 1–7. [Google Scholar] [CrossRef]
- Peng, C.; Chen, Z.; Tiwari, M.K. All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance. Nat. Mater. 2018, 17, 355–360. [Google Scholar] [CrossRef]
- Liu, H.-d.; Zhang, H.; Pang, J.; Ning, Y.-J.; Jia, F.; Yuan, W.-F.; Gu, B.; Zhang, Q.-P. Superhydrophobic property of epoxy resin coating modified with octadecylamine and SiO2 nanoparticles. Mater. Lett. 2019, 247, 204–207. [Google Scholar] [CrossRef]
- Zang, D.; Liu, F.; Zhang, M.; Niu, X.; Gao, Z.; Wang, C. Superhydrophobic coating on fiberglass cloth for selective removal of oil from water. Chem. Eng. J. 2015, 262, 210–216. [Google Scholar] [CrossRef]
- Ming, W.; Wu, D.; van Benthem, R.; de With, G. Superhydrophobic Films from Raspberry-like Particles. Nano Lett. 2005, 5, 2298–2301. [Google Scholar] [CrossRef]
- Lyu, J.; Wu, B.; Wu, N.; Peng, C.; Yang, J.; Meng, Y.; Xing, S. Green preparation of transparent superhydrophobic coatings with persistent dynamic impact resistance for outdoor applications. Chem. Eng. J. 2021, 404, 126456. [Google Scholar] [CrossRef]
- Li, M.; Luo, W.; Sun, H.; Zhang, M.; Ng, K.W.; Wang, F.; Cheng, X. Low-cost preparation of durable, transparent, superhydrophobic coatings with excellent environmental stability and self-cleaning function. Surf. Coat. Technol. 2022, 438, 128367. [Google Scholar] [CrossRef]
- Deng, X.; Mammen, L.; Butt, H.-J.; Vollmer, D. Candle Soot as a Template for a Transparent Robust Superamphiphobic Coating. Science 2012, 335, 67–70. [Google Scholar] [CrossRef]
- Xiao, T.; Wei, K.; Wang, Y.; Jiang, L.; Xiang, P.; Li, X.; Tan, X. Transparent and durable PDMS(O)/HDTMS anti-icing surfaces derived from candle soot. Surf. Coat. Technol. 2022, 445, 128717. [Google Scholar] [CrossRef]
- Gao, Y.; Gereige, I.; El Labban, A.; Cha, D.; Isimjan, T.T.; Beaujuge, P.M. Highly Transparent and UV-Resistant Superhydrophobic SiO2-Coated ZnO Nanorod Arrays. ACS Appl. Mater. Interfaces 2014, 6, 2219–2223. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Wang, F.; Li, W.; Ou, J.; Li, C.; Amirfazli, A. Anti-icing properties of superhydrophobic ZnO/PDMS composite coating. Appl. Phys. A 2015, 122, 1. [Google Scholar] [CrossRef]
- Wu, B.; Lyu, J.; Peng, C.; Jiang, D.; Yang, J.; Yang, J.; Xing, S.; Sheng, L. Inverse infusion processed hierarchical structure towards superhydrophobic coatings with ultrahigh mechanical robustness. Chem. Eng. J. 2020, 387, 124066. [Google Scholar] [CrossRef]
- Li, M.; Luo, W.; Sun, H.; Xu, J.; Ng, K.W.; Cheng, X. Micropatterned Amorphous Zr-Based Alloys Coated with Silica Nanoparticles as Superhydrophobic Surfaces against Abrasion. ACS Appl. Nano Mater. 2021, 4, 12300–12307. [Google Scholar] [CrossRef]
- Wang, D.; Sun, Q.; Hokkanen, M.J.; Zhang, C.; Lin, F.-Y.; Liu, Q.; Zhu, S.-P.; Zhou, T.; Chang, Q.; He, B.; et al. Design of robust superhydrophobic surfaces. Nature 2020, 582, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Hu, J.; Wang, M.; Cheng, G.J.; Xu, S. Armored Nanocones Engraved by Selective Laser Doping Enhanced Plasma Etching for Robust Supertransmissivity. ACS Appl. Mater. Interfaces 2022, 14, 47237–47245. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Xu, J.; Li, G.; Niu, G.; Ng, K.W.; Wang, F.; Li, M. Fabrication of Robust, Anti-reflective, Transparent Superhydrophobic Coatings with a Micropatterned Multilayer Structure. Langmuir 2022, 38, 7129–7136. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Yang, J.; Cao, W.; Huang, Y.; Zhou, Z.; Huang, Y.-X. Fabrication of transparent wear-resistant superhydrophobic SiO2 film via phase separation and chemical vapor deposition methods. Ceram. Int. 2022, 48, 32143–32151. [Google Scholar] [CrossRef]
- Kulinich, S.A.; Masson, D.; Du, X.-W.; Emelyanenko, A.M. Testing the Durability of Anti-Icing Coatings. In Ice Adhesion; Scrivener Publishing LLC: Beverly, MA, USA, 2020; pp. 495–519. [Google Scholar] [CrossRef]
Method | Surface | Transp. | Abrasion Resistance | Tape Peel | Water/Sand Impact | Chemical Stability | Flexibility | Ref. | |
---|---|---|---|---|---|---|---|---|---|
Top-down | Anodic oxidation | F-TNTs/TiN | 80% | CA of 144° after 400 cm sandpaper abrasion under 1.7 kPa | CA of 143° after 100 cycles | CA of 145° after immersion of 1 M HCl solution for 4.5 h | Non-flexible | [53] | |
Pattern replication | PDMS | 76% | CA of 151° after 5 cm sandpaper abrasion under 1 N | CA of 148° after 20 cycles | CA of 157° after 20 g sand impact from 50 cm height | CA of 165° under 30% strain | [56] | ||
Pattern replication | PDMS | 92% | CA of 152° after 20 g sand impact from 20 cm height | CA of 152° after UV irradiation for 7 d | CA of 153° after 10,000 cycles of bending | [55] | |||
Bottom-up | Soot template | PDMS(O), HDTMS | 88% | CA of 145° after 1000 cm sandpaper abrasion under 1 N | CA of 150° after 40 cycles | CA of 145° after water impact from 23 cm height for 50,000 drops | CA > 150° after acidic (pH1) immersion for 170 h | [85] | |
Spin-coating | SiO2, GPDF | 93% | CA of 128° after 1000 cm sandpaper abrasion under 0.5 N | CA of 140° after 200 cycles | CA of 135° after water impact from 50 cm height for 6000 drops | CA of 145° after HCl (0.1 M) immersion for 40 min | [63] | ||
Spin-coating | SiO2, oligomer | 85% | CA > 150° after 30 cycles | CA > 150° after water jet at 100 kPa for 3 min | CA > 150° after acidic (pH2) immersion for 24 h | CA > 150° after 50 cycles bending | [68] | ||
Spin-coating | SiO2, epoxy | 89% | CA of 145° after 50 cycles | CA of 153° after water jet at 1 m/s for 35 min | CA of 150° after 10% HCl immersion for 200 min | CA of 150° after 1000 cycles bending | [83] | ||
Self-assembly | SiO2, epoxy | 83% | CA < 150° after 10 cycles | CA < 150° after water jet at 8.6 m/s for 6 min | CA < 150° after H2SO4 (5 M) immersion for 55 h | [82] | |||
Armor | Hot pressing, spraying | Glass, Ultra-Ever Dry | 92% | CA > 150° after 1000 cycles sandpaper abrasion under 3 N | CA > 150° after 100 cycles | CA > 150° after 400 mL water jet at 20.4 m/s | CA < 150° after NaOH (2.5 M) immersion for 4 h | Non-flexible | [90] |
Imprint, spin-coating | SiO2, epoxy, resist | 92% | CA of 133° after 128 cm sandpaper abrasion under 26 kPa | CA of 150°after water jet at 1 m/s for 35 min | CA of 150° after 10% HCl immersion for 200 min | CA of 150° after 1000 cycles bending | [92] | ||
Spin-coating, CVD | SiO2, epoxy | 89% | CA of 131° after 2000 cycles flannel abrasion under 30 kPa | ISO 2409-1992 (0–1 grade) | CA > 150° after H2SO4 (pH1) and NaOH (pH14) immersion for 48 h | [93] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, W.; Li, M. Recent Advances in Fabrication of Durable, Transparent, and Superhydrophobic Surfaces. Nanomaterials 2023, 13, 2359. https://doi.org/10.3390/nano13162359
Luo W, Li M. Recent Advances in Fabrication of Durable, Transparent, and Superhydrophobic Surfaces. Nanomaterials. 2023; 13(16):2359. https://doi.org/10.3390/nano13162359
Chicago/Turabian StyleLuo, Wenxin, and Mingjie Li. 2023. "Recent Advances in Fabrication of Durable, Transparent, and Superhydrophobic Surfaces" Nanomaterials 13, no. 16: 2359. https://doi.org/10.3390/nano13162359
APA StyleLuo, W., & Li, M. (2023). Recent Advances in Fabrication of Durable, Transparent, and Superhydrophobic Surfaces. Nanomaterials, 13(16), 2359. https://doi.org/10.3390/nano13162359