Laser-Heat Surface Treatment of Superwetting Copper Foam for Efficient Oil–Water Separation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Laser-Heat Surface Treatment
2.3. Surface Characterizations
2.4. Oil–Water Separation
3. Results
3.1. Surface Morphology Analysis
3.2. Surface Wettability Analysis
3.3. Surface Chemistry Analysis
3.4. Oil–Water Separation Performance
4. Conclusions
- Nanosecond laser surface texturing can significantly modify the skeleton structure of the Cu foam by inducing micro/nanostructures on top. The laser processing parameters will also greatly influence the density and size of the micro/nanostructures, and thus should be carefully controlled.
- The surface energy of the laser-textured Cu foam was reduced by heat treatment, which should be attributed to the combined effects of adsorption of hydrophobic airborne carbon-containing groups and the generation of a Si-based PDMS layer.
- The Cu foam exhibited superhydrophilicity/superoleophilicity directly upon laser surface texturing and was converted to superhydrophobicity/superoleophilicity subsequent to heat treatment. The wettability transition was ascribed to laser-induced micro/nanostructures and the reduction of surface energy.
- The laser-heat treated Cu foam showed good performance for oil–water separation with good separation efficiency up to 94.6%, and the oil–water separation process can be repeated.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xue, Z.; Cao, Y.; Liu, N.; Feng, L.; Jiang, L. Special Wettable Materials for Oil/Water Separation. J. Mater. Chem. A 2014, 2, 2445–2460. [Google Scholar] [CrossRef]
- Yong, J.; Huo, J.; Chen, F.; Yang, Q.; Hou, X. Oil/Water Separation Based on Natural Materials with Super-Wettability: Recent Advances. Phys. Chem. Chem. Phys. 2018, 20, 25140–25163. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Qi, C.-H.; Zhao, Z.-Q. Numerical Simulation of Synthetic Aperture Radar Images for Ocean Oil Spill Pollution. Electromagnetics 2016, 36, 32–43. [Google Scholar] [CrossRef]
- Wei, Q.F.; Mather, R.R.; Fotheringham, A.F.; Yang, R.D. Evaluation of Nonwoven Polypropylene Oil Sorbents in Marine Oil-Spill Recovery. Mar. Pollut. Bull. 2003, 46, 780–783. [Google Scholar] [CrossRef] [PubMed]
- Kleindienst, S.; Paul, J.H.; Joye, S.B. Using Dispersants after Oil Spills: Impacts on the Composition and Activity of Microbial Communities. Nat. Rev. Microbiol. 2015, 13, 388–396. [Google Scholar] [CrossRef]
- Kang, W.; Guo, L.; Fan, H.; Meng, L.; Li, Y. Flocculation, Coalescence and Migration of Dispersed Phase Droplets and Oil-Water Separation in Heavy Oil Emulsion. J. Pet. Sci. Eng. 2012, 81, 177–181. [Google Scholar] [CrossRef]
- Schaum, J.; Cohen, M.; Perry, S.; Artz, R.; Draxler, R.; Frithsen, J.B.; Heist, D.; Lorber, M.; Phillips, L. Screening Level Assessment of Risks Due to Dioxin Emissions from Burning Oil from the BP Deepwater Horizon Gulf of Mexico Spill. Environ. Sci. Technol. 2010, 44, 9383–9389. [Google Scholar] [CrossRef]
- Ventikos, N.P.; Vergetis, E.; Psaraftis, H.N.; Triantafyllou, G. A High-Level Synthesis of Oil Spill Response Equipment and Countermeasures. J. Hazard. Mater. 2004, 107, 51–58. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, H.; Liu, Y.; Craig, V.S.J.; Wang, C.; Li, L.H.; Chen, Y. Superhydrophobic and Superoleophilic Porous Boron Nitride Nanosheet/Polyvinylidene Fluoride Composite Material for Oil-Polluted Water Cleanup. Adv. Mater. Interfaces 2015, 2, 1400267. [Google Scholar] [CrossRef]
- Zhou, W.; Li, G.; Wang, L.; Chen, Z.; Lin, Y. A Facile Method for the Fabrication of a Superhydrophobic Polydopamine-Coated Copper Foam for Oil/Water Separation. Appl. Surf. Sci. 2017, 413, 140–148. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, W.; Su, B.L. Superhydrophobic Surfaces: From Natural to Biomimetic to Functional. J. Colloid Interface Sci. 2011, 353, 335–355. [Google Scholar] [CrossRef] [PubMed]
- Drelich, J.; Chibowski, E. Superhydrophilic and Superwetting Surfaces: Definition and Mechanisms of Control. Langmuir 2010, 26, 18621–18623. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Chao, J.; Zhang, J.; Zhang, Z.; Liu, X.; Tian, Y.; Zhang, D.; Chen, F. Functionalized CFRP Surface with Water-Repellence, Self-Cleaning and Anti-Icing Properties. Colloids Surf. A Physicochem. Eng. Asp. 2020, 586, 124278. [Google Scholar] [CrossRef]
- Farhadi, S.; Farzaneh, M.; Kulinich, S.A. Anti-Icing Performance of Superhydrophobic Surfaces. Appl. Surf. Sci. 2011, 257, 6264–6269. [Google Scholar] [CrossRef]
- Pan, R.; Zhang, H.; Zhong, M. Triple-Scale Superhydrophobic Surface with Excellent Anti-Icing and Icephobic Performance via Ultrafast Laser Hybrid Fabrication. ACS Appl. Mater. Interfaces 2021, 13, 1743–1753. [Google Scholar] [CrossRef]
- Truesdell, R.; Mammoli, A.; Vorobieff, P.; Van Swol, F.; Brinker, C.J. Drag Reduction on a Patterned Superhydrophobic Surface. Phys. Rev. Lett. 2006, 97, 044504. [Google Scholar] [CrossRef]
- Wei, D.; Wang, J.; Wang, H.; Liu, Y.; Li, S.; Li, D. Anti-Corrosion Behaviour of Superwetting Structured Surfaces on Mg-9Al-1Zn Magnesium Alloy. Appl. Surf. Sci. 2019, 483, 1017–1026. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, Z.; Mai, Z.; Ma, Y.; Liu, B.; Jiang, L.; Zhu, D. A Super-Hydrophobic and Super-Oleophilic Coating Mesh Film for the Separation of Oil and Water. Angew. Chem. 2004, 116, 2046–2048. [Google Scholar] [CrossRef]
- Kong, L.; Wang, Q.; Xiong, S.; Wang, Y. Turning Low-Cost Filter Papers to Highly Efficient Membranes for Oil/Water Separation by Atomic-Layer-Deposition-Enabled Hydrophobization. Ind. Eng. Chem. Res. 2014, 53, 16516–16522. [Google Scholar] [CrossRef]
- Zou, D.; Fan, W.; Xu, J.; Drioli, E.; Chen, X.; Qiu, M.; Fan, Y. One-Step Engineering of Low-Cost Kaolin/Fly Ash Ceramic Membranes for Efficient Separation of Oil-Water Emulsions. J. Memb. Sci. 2021, 621, 118954. [Google Scholar] [CrossRef]
- Zhang, J.; Ji, K.; Chen, J.; Ding, Y.; Dai, Z. A Three-Dimensional Porous Metal Foam with Selective-Wettability for Oil–Water Separation. J. Mater. Sci. 2015, 50, 5371–5377. [Google Scholar] [CrossRef]
- Alnaser, A.S.; Khan, S.A.; Ganeev, R.A.; Stratakis, E. Recent Advances in Femtosecond Laser-Induced Surface Structuring for Oil-Water Separation. Appl. Sci. 2019, 9, 1554. [Google Scholar] [CrossRef] [Green Version]
- Ahlawat, S.; Singh, A.; Mukhopadhyay, P.K.; Singh, R.; Bindra, K.S. Nanosecond Laser Induced Glass Particle Deposition over Steel Mesh for Long-Term Superhydrophilicity and Gravity Driven Oil Water Separation. Mater. Chem. Phys. 2021, 263, 124343. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Y.; Ke, C.; Hu, X. Nanosecond Laser Fabrication of Superwetting Surface on Cu Foam for Oil-Water Separation and Oil Recovery. JCIS Open 2021, 2, 100010. [Google Scholar] [CrossRef]
- Wang, J.; Xu, J.; Lian, Z.; Wang, J.; Chen, G.; Li, Y.; Yu, H. Facile and Green Fabrication of Robust Microstructured Stainless Steel Mesh for Efficient Oil/Water Separation via Waterjet-Assisted Laser Ablation. Colloids Surf. A Physicochem. Eng. Asp. 2022, 643, 128703. [Google Scholar] [CrossRef]
- Ren, W.; Lian, Z.; Wang, J.; Xu, J.; Yu, H. Fabrication of Durable Underoil Superhydrophobic Surfaces with Self-Cleaning and Oil-Water Separation Properties. RSC Adv. 2022, 12, 3838–3846. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, J.; Ouyang, L.; Zhang, K.; Xie, G.; Jiang, S. A Facile and Fast Preparation of Robust Superhydrophobic Brass Mesh Coated with Cu(OH)2 Nanowires by Pulse Electrodeposition for Continuous Highly Efficient Oil/Water Separation. Colloids Surf. A Physicochem. Eng. Asp. 2022, 634, 127968. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, H.; Zhu, Z.; Xiang, N.; Wang, Z.; Sun, G. Switchable Wettability Control of Titanium via Facile Nanosecond Laser-Based Surface Texturing. Surf. Interfaces 2021, 24, 101122. [Google Scholar] [CrossRef]
- Wang, H.; Ma, Y.; Bai, Z.; Liu, J.; Huo, L.; Wang, Q. Evaluation of Tribological Performance for Laser Textured Surfaces with Diverse Wettabilities under Water/Oil Lubrication Environments. Colloids Surf. A Physicochem. Eng. Asp. 2022, 645, 128949. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, H. Fabrication of Textured Surface with Controllable Wettability via Laser-Thermal Hybrid Processing. Mater. Lett. 2022, 315, 131954. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, H. Laser Surface Functionalization to Achieve Extreme Surface Wetting Conditions and Resultant Surface Functionalities. J. Cent. South Univ. 2022, 29, 3217–3247. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, Y.; Li, J.; Zou, M.; Zheng, H. UV Laser-Produced Copper Micro-Mesh with Superhydrophobic-Oleophilic Surface for Oil-Water Separation. J. Mater. Res. Technol. 2021, 15, 5733–5745. [Google Scholar] [CrossRef]
- Bakhtiari, N.; Azizian, S.; Mohazzab, B.F.; Jaleh, B. One-Step Fabrication of Brass Filter with Reversible Wettability by Nanosecond Fiber Laser Ablation for Highly Efficient Oil/Water Separation. Sep. Purif. Technol. 2021, 259, 118139. [Google Scholar] [CrossRef]
- Chen, L.; Huang, Y.; Yang, T.; Bennett, P.; Zheng, Z.; Yang, Q.; Liu, D. Laser-Structured Superhydrophobic/Superoleophilic Aluminum Surfaces for Efficient Oil/Water Separation. Environ. Sci. Pollut. Res. 2020, 27, 43138–43149. [Google Scholar] [CrossRef]
- Xin, G.; Wu, C.; Liu, W.; Wang, M.; Huang, Y.; Rong, Y. Fabrication of Super-Wetting Copper Foam Based on Laser Ablation for Selective and Efficient Oil-Water Separation. Surf. Coat. Technol. 2021, 424, 127650. [Google Scholar] [CrossRef]
- Wang, Q.; Cheng, Y.; Zhu, Z.; Xiang, N.; Wang, H. Modulation and Control of Wettability and Hardness of Zr-Based Metallic Glass via Facile Laser Surface Texturing. Micromachines 2021, 12, 1322. [Google Scholar] [CrossRef]
- Pan, Q.; Wang, M.; Wang, H. Separating Small Amount of Water and Hydrophobic Solvents by Novel Superhydrophobic Copper Meshes. Appl. Surf. Sci. 2008, 254, 6002–6006. [Google Scholar] [CrossRef]
- Feng, L.; Li, S.; Li, Y.; Li, H.; Zhang, L.; Zhai, J.; Song, Y.; Liu, B.; Jiang, L.; Zhu, D. Super-Hydrophobic Surfaces: From Natural to Artificial. Adv. Mater. 2002, 14, 1857–1860. [Google Scholar] [CrossRef]
- Feng, X.; Jiang, L. Design and Creation of Superwetting/Antiwetting Surfaces. Adv. Mater. 2006, 18, 3063–3078. [Google Scholar] [CrossRef]
- Tanvir Ahmmed, K.M.; Grambow, C.; Kietzig, A.M. Fabrication of Micro/Nano Structures on Metals by Femtosecond Laser Micromachining. Micromachines 2014, 5, 1219–1253. [Google Scholar] [CrossRef] [Green Version]
- Long, J.; Zhong, M.; Fan, P.; Gong, D.; Zhang, H. Wettability Conversion of Ultrafast Laser Structured Copper Surface. J. Laser Appl. 2015, 27, S29107. [Google Scholar] [CrossRef] [Green Version]
- Long, J.; Zhong, M.; Zhang, H.; Fan, P. Superhydrophilicity to Superhydrophobicity Transition of Picosecond Laser Microstructured Aluminum in Ambient Air. J. Colloid Interface Sci. 2015, 441, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Gregorčič, P.; Šetina-Batič, B.; Hočevar, M.; Šetina-Batič, B.; Hočevar, M.; Šetina-Batič, B.; Hočevar, M. Controlling the Stainless Steel Surface Wettability by Nanosecond Direct Laser Texturing at High Fluences. Appl. Phys. A 2017, 123, 766. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Samanta, A.; Shaw, S.K.; Hu, H.; Ding, H. Nanosecond Laser-Based High-Throughput Surface Nanostructuring (NHSN). Appl. Surf. Sci. 2020, 507, 145136. [Google Scholar] [CrossRef]
- Fasasi, A.Y.; Mwenifumbo, S.; Rahbar, N.; Chen, J.; Li, M.; Beye, A.C.; Arnold, C.B.; Soboyejo, W.O. Nano-Second UV Laser Processed Micro-Grooves on Ti6Al4V for Biomedical Applications. Mater. Sci. Eng. C 2009, 29, 5–13. [Google Scholar] [CrossRef]
- Ngo, C.V.; Chun, D.M. Effect of Heat Treatment Temperature on the Wettability Transition from Hydrophilic to Superhydrophobic on Laser-Ablated Metallic Surfaces. Adv. Eng. Mater. 2018, 20, 1701086. [Google Scholar] [CrossRef]
- Tian, Y.; Jiang, L. Wetting: Intrinsically Robust Hydrophobicity. Nat. Mater. 2013, 12, 291–292. [Google Scholar] [CrossRef]
- Jeong, M.G.; Seo, H.O.; Kim, K.D.; Kim, Y.D.; Lim, D.C. Enhanced Photocatalytic Activity of TiO2 by Polydimethylsiloxane Deposition and Subsequent Thermal Treatment at 800 °C. Thin Solid Film. 2012, 520, 4929–4933. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Average power (W) | 8~12 |
Laser beam diameter (μm) | 50 |
Repetition rate (kHz) | 40 |
Pulse width (ns) | 12 |
Scanning speed (mm/s) | 100~300 |
Line spacing (µm) | 20~30 |
Power intensity (GW/cm2) | 0.85~1.27 |
Pulse energy (mJ) | 0.20~0.30 |
Element (Atomic%) | Untreated | Laser-Textured | Laser-Heat Treated |
---|---|---|---|
Cu | 70.62 | 55.82 | 52.47 |
C | 27.45 | 29.38 | 32.65 |
O | 1.93 | 14.80 | 13.63 |
Si | 0 | 0 | 1.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Liu, C.; Wang, H.; Yin, K.; Yu, Z.; Wang, T.; Ye, M.; Pei, X.; Liu, X. Laser-Heat Surface Treatment of Superwetting Copper Foam for Efficient Oil–Water Separation. Nanomaterials 2023, 13, 736. https://doi.org/10.3390/nano13040736
Wang Q, Liu C, Wang H, Yin K, Yu Z, Wang T, Ye M, Pei X, Liu X. Laser-Heat Surface Treatment of Superwetting Copper Foam for Efficient Oil–Water Separation. Nanomaterials. 2023; 13(4):736. https://doi.org/10.3390/nano13040736
Chicago/Turabian StyleWang, Qinghua, Chao Liu, Huixin Wang, Kai Yin, Zhongjie Yu, Taiyuan Wang, Mengqi Ye, Xianjun Pei, and Xiaochao Liu. 2023. "Laser-Heat Surface Treatment of Superwetting Copper Foam for Efficient Oil–Water Separation" Nanomaterials 13, no. 4: 736. https://doi.org/10.3390/nano13040736
APA StyleWang, Q., Liu, C., Wang, H., Yin, K., Yu, Z., Wang, T., Ye, M., Pei, X., & Liu, X. (2023). Laser-Heat Surface Treatment of Superwetting Copper Foam for Efficient Oil–Water Separation. Nanomaterials, 13(4), 736. https://doi.org/10.3390/nano13040736