The Slight Adjustment in the Weight of Sulfur Sheets to Synthesize β-NiS Nanobelts for Maintaining Detection of Lower Concentrations of Glucose through a Long-Term Storage Test
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Surface Morphology and Optical Characterization
2.3. Electrochemical Measurements
3. Results and Discussion
3.1. Characterization of Ni Nanomaterial
3.2. XRD Analysis of Ni Films
3.3. XRD Analysis of β-NiS Films
3.4. FESEM-EDAX Analysis of β-NiS Films
3.5. Optical Analysis of β-NiS Films
3.6. Electrochemical Analysis of β-NiS Films
3.7. HR-TEM Analysis of β-NiS Nanobelts
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, J.Z.; Chou, S.L.; Chew, S.Y.; Sun, J.Z.; Forsyth, M.; MacFarlane, D.R.; Liu, H.K. Nickel sulfide cathode in combination with an ionic liquid-based electrolyte for rechargeable lithium batteries. Solid State Ionics 2008, 179, 2379–2382. [Google Scholar] [CrossRef]
- Idris, N.H.; Rahman, M.M.; Chou, S.L.; Wang, J.Z.; Wexler, D.; Liu, H.K. Rapid synthesis of binary α-NiS–β-NiS by microwave autoclave for rechargeable lithium batteries. Electrochim. Acta. 2011, 58, 456–462. [Google Scholar] [CrossRef]
- Tran, V.C.; Sahoo, S.; Shim, J.J. Room-temperature synthesis of NiS hollow spheres on nickel foam for high-performance supercapacitor electrodes. Mater. Lett. 2018, 210, 105–108. [Google Scholar] [CrossRef]
- Zhang, L.; Tian, B.; Chen, F.; Zhang, J. Nickel sulfide as co-catalyst on nanostructured TiO2 for photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2012, 37, 17060–17067. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, P.; Fan, B.; Zhang, Z.Z. In Situ Template-Free Ion-Exchange Process to Prepare Visible-Light-Active g-C3N4/NiS Hybrid Photocatalysts with Enhanced Hydrogen Evolution Activity. J. Phys. Chem. C. 2014, 118, 7801–7807. [Google Scholar] [CrossRef]
- Yin, M.; Zhang, W.; Qiao, F.; Sun, J.; Fan, Y.; Li, Z. Hydrothermal synthesis of MoS2-NiS/CdS with enhanced photocatalytic hydrogen production activity and stability. J. Solid State Chem. 2019, 270, 531–538. [Google Scholar] [CrossRef]
- Wei, C.; Cheng, C.; Zhao, J.; Wang, Y.; Cheng, Y.; Xu, Y.; Du, W.; Pang, H. NiS Hollow Spheres for High-Performance Supercapacitors and Non-Enzymatic Glucose Sensors. Chem. Asian J. 2015, 10, 679–686. [Google Scholar] [CrossRef]
- Kannan, P.K.; Rout, C.S. High Performance Non-enzymatic Glucose Sensor Based on One-Step Electrodeposited Nickel Sulfide. Chem. Eur. J. 2015, 21, 9355–9359. [Google Scholar] [CrossRef]
- Lin, H.S.; Shi, J.B.; Peng, C.M.; Zheng, B.C.; Cheng, F.C.; Lee, M.W.; Lee, H.W.; Wu, P.F.; Liu, Y.J. Manipulating the Temperature of Sulfurization to Synthesize α-NiS Nanosphere Film for Long-Term Preservation of Non-enzymatic Glucose Sensors. Nanoscale Res. Lett. 2018, 13, 109. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Kim, S.J. Facile fabrication of NiS and reduced graphene oxide hybrid film for nonenzymatic detection of glucose. RSC Adv. 2015, 5, 44346–44352. [Google Scholar] [CrossRef]
- Toghill, K.E.; Compton, R.G. Electrochemical Non-enzymatic Glucose Sensors: A Perspective and an Evaluation. Int. J. Electrochem. Sci. 2010, 5, 1246–1301. [Google Scholar] [CrossRef]
- Hsu, C.W.; Su, F.C.; Peng, P.Y.; Young, H.T.; Liao, S.; Wang, G.J. Highly sensitive non-enzymatic electrochemical glucose biosensor using a photolithography fabricated micro/nano hybrid structured electrode. Sens. Actuators B Chem. 2016, 230, 559–565. [Google Scholar] [CrossRef]
- Galant, A.L.; Kaufman, R.C.; Wilson, J.D. Glucose: Detection and analysis. Food Chem. 2015, 188, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Juska, V.B.; Pemble, M.E. Synthesis of Novel CuO Nanosheets and Their Non-Enzymatic Glucose Sensing Applications. Sensors 2020, 20, 6013. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, P.; Dhar, S.; Deka, N.; Debnath, K.; Mondal, S.P. Non-enzymatic salivary glucose detection using porous CuO nanostructures. Sens. Actuators B Chem. 2020, 302, 127134. [Google Scholar] [CrossRef]
- Mazurków, J.; Kusior, A.; Radecka, M. Nonenzymatic Glucose Sensors Based on Copper Sulfides: Effect of Binder-Particles Interactions in Drop-Casted Suspensions on Electrodes Electrochemical Performance. Sensors 2021, 21, 802. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, R.; Wei, Y.; Pei, X.; Zhou, Z.; Zhang, J.; Zhang, R.; Zhang, D. MOF-derived Porous NiO Nanorod and Microflower Structures with Enhanced Non-enzymatic Glucose Electrochemical Sensing Performance. Int. J. Electrochem. Sci. 2021, 16, 210465. [Google Scholar] [CrossRef]
- Goodnight, L.; Butler, D.; Xia, T.; Ebrahimi, A. Non-Enzymatic Detection of Glucose in Neutral Solution Using PBS-Treated Electrodeposited Copper-Nickel Electrodes. Biosensors 2021, 11, 409. [Google Scholar] [CrossRef]
- Reddy, V.S.; Agarwal, B.; Ye, Z.; Zhang, C.; Roy, K.; Chinnappan, A.; Narayan, R.J.; Ramakrishna, S.; Ghosh, R. Recent Advancement in Biofluid-Based Glucose Sensors Using Invasive, Minimally Invasive, and Non-Invasive Technologies: A Review. Nanomaterials 2022, 12, 1082. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, X.; Yu, Q.; Ye, L.; Yang, L.; Cui, Y. Review of point-of-care platforms for diabetes: (1) sensing. Sens. Actuators Rep. 2022, 4, 100113. [Google Scholar] [CrossRef]
- Vander Heiden, M.G.; Plas, D.R.; Rathmell, J.C.; Fox, C.J.; Harris, M.H.; Thompson, C.B. Growth Factors Can Influence Cell Growth and Survival through Effects on Glucose Metabolism. Mol. Cell. Biol. 2001, 17, 5899–5912. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Kon, N.; Jiang, L.; Tan, M.; Ludwig, T.; Zhao, Y.; Baer, R.; Gu, W. Tumor Suppression in the Absence of p53-Mediated Cell-Cycle Arrest, Apoptosis, and Senescence. Cell 2012, 149, 1269–1283. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xi, X.; Mei, Y.; Zhao, X.; Zhou, L.; Ma, M.; Liu, S.; Zha, X.; Yang, Y. High-glucose Induces Retinal Pigment Epithelium Mitochondrial Pathways of Apoptosis and Inhibits Mitophagy by Regulating ROS/PINK1/Parkin Signal Pathway. Biomed. Pharmacother. 2019, 111, 1315–1325. [Google Scholar] [CrossRef] [PubMed]
- Atsumi, T.; Cho, Y.R.; Leng, L.; McDonald, C.; Yu, T.; Danton, C.; Hong, E.G.; Mitchell, R.A.; Metz, C.; Niwa, H.; et al. The Proinflammatory Cytokine Macrophage Migration Inhibitory Factor Regulates Glucose Metabolism during Systemic Inflammation. J. Immunol. 2007, 179, 5399–5406. [Google Scholar] [CrossRef]
- Varelas, V.; Tataridis, P.; Liouni, M.; Nerantzis, E.T. Application of different methods for the extraction of yeast β-glucan. e-JST 2016, 11, 75–89. [Google Scholar]
- Ho, G.T.T.; Nguyen, T.K.Y.; Kase, E.T.; Tadesse, M.; Barsett, H.; Wangensteen, H. Enhanced Glucose Uptake in Human Liver Cells and Inhibition of Carbohydrate Hydrolyzing Enzymes by Nordic Berry Extracts. Molecules 2017, 22, 1806. [Google Scholar] [CrossRef]
- Si, P.; Huang, Y.; Wang, T.; Ma, J. Nanomaterials for electrochemical non-enzymatic glucose biosensors. RSC Adv. 2013, 3, 3487–3502. [Google Scholar] [CrossRef]
- Yu, Z.; Kang, Z.; Hu, Z.; Lu, J.; Zhou, Z.; Jiao, S. Hexagonal NiS nanobelts as advanced cathode materials for rechargeable Al-ion batteries. Chem. Commun. 2016, 52, 10427–10430. [Google Scholar] [CrossRef]
- Zhuo, X.; Jiang, W.; Qian, G.; Chen, J.; Yu, T.; Luo, L.; Lu, L.; Chen, Y.; Yin, S. Ni3S2/Ni Heterostructure Nanobelt Arrays as Bifunctional Catalysts for Urea-Rich Wastewater Degradation. ACS Appl. Mater. Interfaces 2021, 13, 35709–35718. [Google Scholar] [CrossRef]
- Nikolic, N.D. The effects of a magnetic field on the morphologies of nickel and copper deposits: The concept of “effective overpotential. J. Serb. Chem. Soc. 2007, 72, 787–797. [Google Scholar] [CrossRef]
- Tian, L.; Xu, J.; Xiao, S. The influence of pH and bath composition on the properties of Ni–Co coatings synthesized by electrodeposition. Vacuum 2011, 86, 27–33. [Google Scholar] [CrossRef]
- Denholme, S.J.; Gallagher, J.B.; Dobson, P.S.; Weaver, J.M.R.; Gregory, D.H. New Surface-Directed Vapour Transport Methods for the Controlled Growth of Nickel Sulfide Nanomaterials. Israel J. Chem. 2010, 50, 515–523. [Google Scholar] [CrossRef]
- Denholme, S.J.; Dobson, P.S.; Weaver, J.M.R.; MacLaren, I.; Gregory, D.H. Growth and characterisation of titanium sulfide nanostructures by surface-assisted vapour transport methods; from trisulfide ribbons to disulfide nanosheets. Int. J. Nanotechnol. 2012, 9, 23–38. [Google Scholar] [CrossRef]
- Tilley, R.D.; Jefferson, D.A. The Synthesis of Nickel Sulfide Nanoparticles on Graphitized Carbon Supports. J. Phys. Chem. B 2002, 106, 10895–10901. [Google Scholar] [CrossRef]
- Sartale, S.D.; Lokhande, C.D. Preparation and characterization of nickel sulphide thin films using successive ionic layer adsorption and reaction (SILAR) method. Chem. Phys. 2001, 72, 101–104. [Google Scholar] [CrossRef]
- Nqombolo, A.; Ajibade, P.A. Synthesis and Spectral Studies of Ni(II) Dithiocarbamate Complexes and Their Use as Precursors for Nickel Sulphides Nanocrystals. J. Chem. 2016, 2016, 1293790. [Google Scholar] [CrossRef]
- Masoud, S.N.; Fatemeh, D.; Hamid, E. Hierarchical nanostructured nickel sulfide architectures through simple hydrothermal method in the presence of thioglycolic acid. Chalcogenide Lett. 2010, 7, 647–655. [Google Scholar]
- Huo, H.; Zhao, Y.; Xu, C. 3D Ni3S2 nanosheet arrays supported on Ni foam for high-performance supercapacitor and non-enzymatic glucose detection. J. Mater. Chem. A 2015, 36, 15111–15117. [Google Scholar] [CrossRef]
- Kim, S.; Lee, S.H.; Cho, M.; Lee, Y. Solvent-assisted morphology confinement of a nickel sulfide nanostructure and its application for non-enzymatic glucose sensor. Biosens Bioelectron. 2016, 85, 587–595. [Google Scholar] [CrossRef]
- Li, D.; Zhang, X.; Pei, L.; Dong, C.; Shi, J.; Xu, Y. High-performance supercapacitors and non-enzymatic electrochemical glucose sensor based on tremella-like NiS/CoS/NiCo2S4 hierarchical structure. Inorg. Chem. Commun. 2019, 110, 107581. [Google Scholar] [CrossRef]
- Vinoth, S.; Rajaitha, P.M.; Venkadesh, A.; Shalini Devi, K.S.; Radhakrishnan, S.; Pandikumar, A. Nickel sulfide-incorporated sulfur-doped graphitic carbon nitride nanohybrid interface for nonenzymatic electrochemical sensing of glucose. Nanoscale Adv. 2020, 2, 4242–4250. [Google Scholar] [CrossRef] [PubMed]
- Arivazhagan, M.; Santhosh, Y.M.; Maduraiveeran, G. Non-Enzymatic Glucose Detection Based on NiS Nanoclusters@NiS Nanosphere in Human Serum and Urine. Micromachines 2021, 12, 403. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Ayyub, M.M. Atomic Layer Deposition of Crystalline β-NiS for Superior Sensing in Thin-Film Non-Enzymatic Electrochemical Glucose Sensors. Appl. Electron. Mater. 2021, 3, 1912–1919. [Google Scholar] [CrossRef]
- Pan, J.N. Evaluating the Gauge Repeatability and Reproducibility for Different Industries. Qual. Quant. 2006, 40, 499–518. [Google Scholar] [CrossRef]
- Knobel, G.; Calimag-Williams, K.; Campiglia, A.D. Solid-phase extraction, sample stacking and capillary zone electrophoresis for the analysis of urinary polycyclic aromatic hydrocarbon metabolites. Analyst 2012, 137, 5639–5647. [Google Scholar] [CrossRef]
Number | Weight of Sulfur Sheet (mg) | XRD Analysis JCPDS Card | Final Product | FE-SEM Analysis for the Different Morphologies |
---|---|---|---|---|
No. 1 | 0.43 | 120041 | β-NiS | irregular particles |
No. 2 | 0.43 | 120041 | β-NiS | irregular particles |
No. 3 | 0.36 | 120041 | β-NiS | Nanobelts + irregular particles |
No. 4 | 0.36 | 120041 | β-NiS | Nanobelts + irregular particles |
No. 5 | 0.43 | 120041 | β-NiS | irregular particles |
No. 6 | 0.44 | 120041 | β-NiS | irregular particles |
No. 7 | 0.44 | 120041 | β-NiS | irregular particles |
No. 8 | 0.34 | 441418 | Ni3S2 | irregular particles |
No. 9 | 0.33 | 441418 | Ni3S2 | irregular particles |
No. 10 | 0.36 | 120041 | β-NiS | Nanobelts + irregular particles |
No. 11 | 0.50 | 750613 | α-NiS | Nanoparticles |
No. 12 | 0.45 | 750613 | α-NiS | irregular particles |
No. 13 | 0.46 | 750613 | α-NiS | irregular particles |
No. 14 | 0.40 | 120041 | β-NiS | irregular particles |
No./Day | Number of Trials/Testing Time for One Trial (Minute) | Average for the Current Response (mA) | Standard Deviation (SD) | Relative Standard Deviation (RSD) | Average for the RSD Value | Reproducibility / Error Value |
---|---|---|---|---|---|---|
No. 3/Day 1 | 10/5 min | 0.3396 | 0.0028 | 0.82% | 0.91% | 99.66% / 0.34% |
10/5 min | 0.3411 | 0.0034 | 0.99% | |||
No. 3/Day 7 | 2/5 min | 0.3382 | 1.25% | |||
No. 10/Day 1 | 10/5 min | 0.3311 | 0.0052 | 1.57% | 1.79% | 98.88% / 1.12% |
10/5 min | 0.3362 | 0.0068 | 2.02% | |||
No. 10/Day 7 | 2/5 min | 0.0810 | 3.49% | |||
No. 3/Day 1 | 1/30 min | 0.3382 | 0.0078 | 2.48% | ||
No. 10/Day 1 | 1/30 min | 0.3181 | ||||
No. 3/Day 1 | 10/0.8 min | 0.3523 | 0.0005 |
Electrode | Sensitivity (mA µM−1 cm−2) | Linear Range (mM) | Low Detection (µM) | Reference |
---|---|---|---|---|
α-NiS and β-NiS hollow spheres | 0.0036 | 0.000125–2.0 | 20 | [7] |
NiS | 0.00743 | 0.005–0.045 | 0.32 | [8] |
α-NiS nanospheres | 0.0084 | 0.001–0.035 | 1.0 | [9] |
NiS micro urchin | – | 0.05–1.7 | 10 | [10] |
Ni3S2 nanosheet arrays | 6.148 | 0.005–3.0 | 1.2 | [38] |
Ni3S2 hierarchical nano cauliflower/NF | 16.46 | 0.0005–3.0 | 0.82 | [39] |
NiS/S-g-C3N4 nanoparticles | 0.08 | 0.001–2.1 | 1.5 | [41] |
NC-NiS@NS-NiS nanoparticles | 0.0546 | 0.02–5.0 | 0.0083 | [42] |
β-NiS nanoparticles | 0.00578 | 0.005–0.06 | 0.052 | [43] |
β-NiS nanobelts | 0.00867 | 0.001–0.035 | 0.381 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.; Peng, C.; Shi, J.; Zheng, B.; Lee, H.; Wu, P.; Lee, M. The Slight Adjustment in the Weight of Sulfur Sheets to Synthesize β-NiS Nanobelts for Maintaining Detection of Lower Concentrations of Glucose through a Long-Term Storage Test. Nanomaterials 2023, 13, 2371. https://doi.org/10.3390/nano13162371
Lin H, Peng C, Shi J, Zheng B, Lee H, Wu P, Lee M. The Slight Adjustment in the Weight of Sulfur Sheets to Synthesize β-NiS Nanobelts for Maintaining Detection of Lower Concentrations of Glucose through a Long-Term Storage Test. Nanomaterials. 2023; 13(16):2371. https://doi.org/10.3390/nano13162371
Chicago/Turabian StyleLin, Hsiensheng, Chengming Peng, Jenbin Shi, Bochi Zheng, Hsuanwei Lee, Pofeng Wu, and Minway Lee. 2023. "The Slight Adjustment in the Weight of Sulfur Sheets to Synthesize β-NiS Nanobelts for Maintaining Detection of Lower Concentrations of Glucose through a Long-Term Storage Test" Nanomaterials 13, no. 16: 2371. https://doi.org/10.3390/nano13162371
APA StyleLin, H., Peng, C., Shi, J., Zheng, B., Lee, H., Wu, P., & Lee, M. (2023). The Slight Adjustment in the Weight of Sulfur Sheets to Synthesize β-NiS Nanobelts for Maintaining Detection of Lower Concentrations of Glucose through a Long-Term Storage Test. Nanomaterials, 13(16), 2371. https://doi.org/10.3390/nano13162371