Improvement of the Stability and Optical Properties of CsPbBr3 QDs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Method
2.2.1. Preparation of Original CsPbBr3 PQDs
2.2.2. Preparation of Mn2+ Doped CsPbBr3 PQDs
2.2.3. Preparation of CsPbBr3 PQDs Partially Substituted by PEABr Ligand OAm
2.2.4. Preparation of CsPbBr3 PQDs Exchanged by PEABr with OAm Ligand
2.2.5. Preparation of CsPbBr3 PQDs of DA Substituted Ligand OA
2.2.6. Preparation of PMMA Encapsulated CsPbBr3 PQDs
2.2.7. Characterization
3. Results and Discussion
3.1. Original CsPbBr3 PQDs
3.2. Mn2+ Doped CsPbBr3 PQDs
3.3. PEABr Partially Replaces the CsPbBr3 PQDs of the Ligand
3.4. CsPbBr3 PQDs with PEABr and OAm Ligand Exchanges
3.5. DA Replaces the CsPbBr3 PQDs of the Ligand
3.6. PMMA Encapsulated CsPbBr3 PQDs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akkerman, Q.A.; Rainò, G.; Kovalenko, M.V.; Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 2018, 17, 394–405. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Zhu, H.; Chen, J.; Hautzinger, M.P.; Zhu, X.-Y.; Jin, S. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater. 2019, 4, 169–188. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, H.; Wu, C.; Dai, J. Stable CsPbX3@SiO2 Perovskite Quantum Dots for White-Light Emitting Diodes. J. Nanoelectron. Optoelectron. 2020, 15, 599–606. [Google Scholar] [CrossRef]
- Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Krieg, F.; Caputo, R.; Hendon, C.H.; Yang, R.X.; Walsh, A.; Kovalenko, M.V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015, 15, 3692–3696. [Google Scholar] [CrossRef]
- Li, J.; Xu, L.; Wang, T.; Song, J.; Chen, J.; Xue, J.; Dong, Y.; Cai, B.; Shan, Q.; Han, B.; et al. 50-Fold EQE Improvement up to 6.27% of Solution-Processed All-Inorganic Perovskite CsPbBr3QLEDs via Surface Ligand Density Control. Adv. Mater. 2017, 29, 1603885. [Google Scholar] [CrossRef]
- Su, Y.; Chen, X.; Ji, W.; Zeng, Q.; Ren, Z.; Su, Z.; Liu, L. Highly Controllable and Efficient Synthesis of Mixed-Halide CsPbX3 (X = Cl, Br, I) Perovskite QDs toward the Tunability of Entire Visible Light. ACS Appl. Mater. Interfaces 2017, 9, 33020–33028. [Google Scholar] [CrossRef]
- Na Quan, L.; Rand, B.P.; Friend, R.H.; Mhaisalkar, S.G.; Lee, T.-W.; Sargent, E.H. Perovskites for Next-Generation Optical Sources. Chem. Rev. 2019, 119, 7444–7477. [Google Scholar] [CrossRef]
- Wang, H.-C.; Bao, Z.; Tsai, H.-Y.; Tang, A.-C.; Liu, R.-S. Perovskite Quantum Dots and Their Application in Light-Emitting Diodes. Small 2018, 14, 17022433. [Google Scholar] [CrossRef]
- Bi, C.; Kershaw, S.V.; Rogach, A.L.; Tian, J. Improved Stability and Photodetector Performance of CsPbI 3 Perovskite Quantum Dots by Ligand Exchange with Aminoethanethiol. Adv. Funct. Mater. 2019, 29, 1902446. [Google Scholar] [CrossRef]
- Huang, H.; Li, Y.; Tong, Y.; Yao, E.; Feil, M.W.; Richter, A.F.; Döblinger, M.; Rogach, A.L.; Feldmann, J.; Polavarapu, L. Spontaneous Crystallization of Perovskite Nanocrystals in Nonpolar Organic Solvents: A Versatile Approach for their Shape-Controlled Synthesis. Angew. Chem. Int. Ed. 2019, 58, 16558–16562. [Google Scholar] [CrossRef]
- Chen, K.; Jin, W.; Zhang, Y.; Yang, T.; Reiss, P.; Zhong, Q.; Bach, U.; Li, Q.; Wang, Y.; Zhang, H.; et al. High Efficiency Mesoscopic Solar Cells Using CsPbI3 Perovskite Quantum Dots Enabled by Chemical Interface Engineering. J. Am. Chem. Soc. 2020, 142, 3775–3783. [Google Scholar] [CrossRef] [PubMed]
- Stoumpos, C.C.; Malliakas, C.D.; Peters, J.A.; Liu, Z.; Sebastian, M.; Im, J.; Chasapis, T.C.; Wibowo, A.C.; Chung, D.Y.; Freeman, A.J.; et al. Crystal Growth of the Perovskite Semiconductor CsPbBr3: A New Material for High-Energy Radiation Detection. Cryst. Growth Des. 2013, 13, 2722–2727. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Nalla, V.; Zeng, H.; Sun, H. Solution-Processed Low Threshold Vertical Cavity Surface Emitting Lasers from All-Inorganic Perovskite Nanocrystals. Adv. Funct. Mater. 2017, 27, 1605088. [Google Scholar] [CrossRef]
- Chen, Y.-X.; Xu, Y.-F.; Wang, X.-D.; Chen, H.-Y.; Kuang, D.-B. Solvent selection and Pt decoration towards enhanced photocatalytic CO2 reduction over CsPbBr3 perovskite single crystals. Sustain. Energy Fuels 2020, 4, 2249–2255. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, Y.; Zhu, T.; Ma, D.; Proppe, A.; Chen, B.; Zheng, C.; Hou, Y.; Lee, S.; Sun, B.; et al. Bright and Stable Light-Emitting Diodes Based on Perovskite Quantum Dots in Perovskite Matrix. J. Am. Chem. Soc. 2021, 143, 15606–15615. [Google Scholar] [CrossRef]
- Niu, G.; Guo, X.; Wang, L. Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 2015, 3, 8970–8980. [Google Scholar] [CrossRef]
- Zou, S.; Liu, Y.; Li, J.; Liu, C.; Feng, R.; Jiang, F.; Li, Y.; Song, J.; Zeng, H.; Hong, M.; et al. Stabilizing Cesium Lead Halide Perovskite Lattice through Mn(II) Substitution for Air-Stable Light-Emitting Diodes. J. Am. Chem. Soc. 2017, 139, 11443–11450. [Google Scholar] [CrossRef]
- Noel, N.K.; Abate, A.; Stranks, S.D.; Parrott, E.S.; Burlakov, V.M.; Goriely, A.; Snaith, H.J. Enhanced Photoluminescence and Solar Cell Performance via Lewis Base Passivation of Organic–Inorganic Lead Halide Perovskites. ACS Nano 2014, 8, 9815–9821. [Google Scholar] [CrossRef]
- Bodnarchuk, M.I.; Boehme, S.C.; Brinck, S.T.; Bernasconi, C.; Shynkarenko, Y.; Krieg, F.; Widmer, R.; Aeschlimann, B.; Günther, D.; Kovalenko, M.V.; et al. Rationalizing and Controlling the Surface Structure and Electronic Passivation of Cesium Lead Halide Nanocrystals. ACS Energy Lett. 2018, 4, 63–74. [Google Scholar] [CrossRef]
- Krieg, F.; Ochsenbein, S.T.; Yakunin, S.; Brinck, S.T.; Aellen, P.; Süess, A.; Clerc, B.; Guggisberg, D.; Nazarenko, O.; Shynkarenko, Y.; et al. Colloidal CsPbX3 (X = Cl, Br, I) Nanocrystals 2.0: Zwitterionic Capping Ligands for Improved Durability and Stability. ACS Energy Lett. 2018, 3, 641–646. [Google Scholar] [CrossRef]
- Liu, Y.; Li, F.; Liu, Q.; Xia, Z. Synergetic Effect of Postsynthetic Water Treatment on the Enhanced Photoluminescence and Stability of CsPbX3 (X = Cl, Br, I) Perovskite Nanocrystals. Chem. Mater. 2018, 30, 6922–6929. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.; Zhao, Y.; Wan, Y.; Li, S.; Tang, Y.; Li, T.; Tian, T.; Wang, L. Reviving aged CsPbBr3 quantum dots by triallylamine etching. Appl. Surf. Sci. 2023, 612, 155775. [Google Scholar] [CrossRef]
- Zhou, N.; Shen, Y.; Zhang, Y.; Xu, Z.; Zheng, G.; Li, L.; Chen, Q.; Zhou, H. CsI Pre-Intercalation in the Inorganic Framework for Efficient and Stable FA1-xCsxPbI3Cl3-x Perovskite Solar Cells. Small 2017, 13, 1700484. [Google Scholar] [CrossRef]
- van der Stam, W.; Geuchies, J.J.; Altantzis, T.; van den Bos, K.H.W.; Meeldijk, J.D.; Van Aert, S.; Bals, S.; Vanmaekelbergh, D.; de Mello Donega, C. Highly Emissive Divalent-Ion-Doped Colloidal CsPb1-xMxBr3 Perovskite Nanocrystals through Cation Exchange. J. Am. Chem. Soc. 2017, 139, 4087–4097. [Google Scholar] [CrossRef]
- Li, G.; Huang, J.; Zhu, H.; Li, Y.; Tang, J.-X.; Jiang, Y. Surface Ligand Engineering for Near-Unity Quantum Yield Inorganic Halide Perovskite QDs and High-Performance QLEDs. Chem. Mater. 2018, 30, 6099–6107. [Google Scholar] [CrossRef]
- Bose, R.; McMillan, J.F.; Gao, J.; Rickey, K.M.; Chen, C.J.; Talapin, D.V.; Murray, C.B.; Wong, C.W. Temperature-Tuning of Near-Infrared Monodisperse Quantum Dot Solids at 1.5 µm for Controllable Förster Energy Transfer. Nano Lett. 2008, 8, 2006–2011. [Google Scholar] [CrossRef] [PubMed]
- Crooker, S.A.; Hollingsworth, J.A.; Tretiak, S.; Klimov, V.I. Spectrally Resolved Dynamics of Energy Transfer in Quantum-Dot Assemblies: Towards Engineered Energy Flows in Artificial Materials. Phys. Rev. Lett. 2002, 89, 186802. [Google Scholar] [CrossRef] [PubMed]
- Luchowski, R.; Matveeva, E.G.; Gryczynski, I.; Terpetschnig, E.A.; Patsenker, L.; Laczko, G.; Borejdo, J.; Gryczynski, Z. Single Molecule Studies of Multiple-Fluorophore Labeled Antibodies. Effect of Homo-FRET on the Number of Photons Available Before Photobleaching. Curr. Pharm. Biotechnol. 2008, 9, 411–420. [Google Scholar] [CrossRef]
- Kagan, C.R.; Murray, C.B.; Nirmal, M.; Bawendi, M.G. Electronic Energy Transfer in CdSe Quantum Dot Solids. Phys. Rev. Lett. 1996, 76, 1517–1520. [Google Scholar] [CrossRef]
- Yan, D.; Shi, T.; Zang, Z.; Zhao, S.; Du, J.; Leng, Y. Stable and low-threshold whispering-gallery-mode lasing from modified CsPbBr3 perovskite quantum dots@SiO2 sphere. Chem. Eng. J. 2020, 401, 126066. [Google Scholar] [CrossRef]
Group | Name | Initial PL Emission Intensity (a.u.) | PL Intensity (a.u.) after 1 Month | PL Intensity (a.u.) after 8 Months |
---|---|---|---|---|
I | Original CsPbBr3 PQDs | 1.7 × 106 | 6.7 × 105 | 1.5 × 104 |
II | Mn2+ doped CsPbBr3 PQDs | 2.0 × 106 | 7.3 × 105 | 1.6 × 104 |
III | PEABr partially replaces the CsPbBr3 PQDs of the ligand | 2.1 × 106 | 9 × 105 | 2.1 × 104 |
IV | PEABr part allocation body exchange CsPbBr3 PQDs | 1.9 × 106 | 6.9 × 105 | 2.0 × 104 |
V | DA replaces the CsPbBr3 PQDs of the ligand | 1.8 × 106 | 6.7 × 105 | 1.6 × 104 |
VI | PMMA encapsulated CsPbBr3 PQDs | 2.6 × 106 | 1.3 × 106 | 3.3 × 105 |
Group | Name | Initial PL Emission Wavelength (nm) | After 3 Days PL Emits Wavelength (nm) | Fluorescence Quantum Yield (%) |
---|---|---|---|---|
I | Original CsPbBr3 PQDs | 525 | 534 | 60.2 |
II | Mn2+ doped CsPbBr3 PQDs | 517 | 525 | 78.0 |
III | PEABr partially replaces the CsPbBr3 PQDs of the ligand | 516 | 518 | 85.2 |
IV | PEABr part allocation body exchange CsPbBr3 PQDs | 526 | 531 | 76.4 |
V | DA replaces the CsPbBr3 PQDs of the ligand | 516 | 519 | 83.5 |
VI | PMMA encapsulated CsPbBr3 PQDs | 520 | 521 | 90.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zou, L.; Yang, M.; Cheng, J.; Jiang, Y.; Huang, G.; Dong, J. Improvement of the Stability and Optical Properties of CsPbBr3 QDs. Nanomaterials 2023, 13, 2372. https://doi.org/10.3390/nano13162372
Wang J, Zou L, Yang M, Cheng J, Jiang Y, Huang G, Dong J. Improvement of the Stability and Optical Properties of CsPbBr3 QDs. Nanomaterials. 2023; 13(16):2372. https://doi.org/10.3390/nano13162372
Chicago/Turabian StyleWang, Jiaming, Li Zou, Meili Yang, Jiajie Cheng, Yufan Jiang, Guangdong Huang, and Jingjing Dong. 2023. "Improvement of the Stability and Optical Properties of CsPbBr3 QDs" Nanomaterials 13, no. 16: 2372. https://doi.org/10.3390/nano13162372
APA StyleWang, J., Zou, L., Yang, M., Cheng, J., Jiang, Y., Huang, G., & Dong, J. (2023). Improvement of the Stability and Optical Properties of CsPbBr3 QDs. Nanomaterials, 13(16), 2372. https://doi.org/10.3390/nano13162372