Increasing the Accuracy of the Characterization of a Thin Semiconductor or Dielectric Film on a Substrate from Only One Quasi-Normal Incidence UV/Vis/NIR Reflectance Spectrum of the Sample
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theory
- whereas
2.2. Features of Simulated Quasi-Normal Incidence Interference Spectra R(λ) and Their Envelopes
- (2.2.1)
- Ru(λ) + Tu(λ) ≈ 1 in the region of weak absorption in the film because the absorbance of the specimen with transparent substrate is Au(λ) = 1 − Ru(λ) + Tu(λ) ≈ 0 in this region, which is illustrated with the dashed magenta line in Figure 3a. Therefore, the interference patterns of R(λ) and T(λ) have very similar features in the region of weak absorption in the film. This fact indicates that advances used for accurate characterization of a thin film from T(λ) (such as those of OEMT), in the region of weak absorption in the film, can be readily employed for accurate characterization of a thin film from R(λ). Moreover, it is seen also from Figure 3a that the reflectance spectrum of the specimen shrinks, and its lower envelope Ru−(λ) drifts above the reflectance Rs(λ) of the bare substrate with decreasing λ in the region of medium absorption in the film, where Au(λ) rises.
- (2.2.2)
- The lower envelope Ru−(λ) of R(λ) almost coincides with Rs(λ) in the region of weak absorption in uniform film (Figure 3a), and R−(λ) is positioned above Rs(λ) in the region of weak absorption in non-uniform film (Figure 3b). However, such a drift of R−(λ) above Rs(λ) can be due to both thickness non-uniformity of the film and absorption in the film, taking into account the last comment from (2.2.1). On the other hand, it was indicated in the introduction that OEMT renders optimized values of both the average thickness and the thickness non-uniformity ∆d of the film based on analysis for its region of weak absorption. As a result of the above and the principle similarity with OEMT, it is expected that employing OEMR can lead to superior accuracy characterization of semiconductor and dielectric films, only from R(λ), over the entire UV/Vis/NIR R(λ).
- (2.2.3)
- In the region where the averaging transmittance in the film is ≈ 0, the film is opaque, the envelopes R+(λ) and R−(λ) merge (as seen in Figure 3b), the incident light is reflected only at the surface film/air, and R(λ) = ρa,f2(λ) = [(n − 1)2 + k2]/[(n + 1)2 + k2]. Therefore, the interference-free part of R(λ) supplies information about n(λ) and k(λ), which can be used for their accurate determination in this region, unlike the transmittance spectrum because T(λ) ≈ 0 there.
- (2.2.4)
- Regarding Figure 3c, the absolute values of all differences in reflectance, calculated by NI with Nst = 100 and Nst = 30, do not exceed 10−4. Since 10−4 is quite a small value compared to R(λ) and the maximum difference in thicknesses d over the light spot of this model film is 2∆d = 60 nm, all NI in Equations (4), (8) and (10) are executed using Nst ≥ ∆d(nm) ∗ 30/60 = ∆d(nm)/2 from here on in this paper. Furthermore, the absolute values of the differences ∆R+ and ∆R−, calculated by NI with Nst = 100 and the analytical approximation from Equation (11), do not exceed 2 × 10−5 over the region of weak absorption in the film, which exemplifies the accuracy of Equation (11).
- (2.2.5)
- The lower envelope R−(λ) of R(λ) is more dependent on the substrate characteristics than the upper envelope R+(λ), as comprehended from Figure 3d. Correspondingly, the envelope R+(λ) should be more dependent on the film characteristics than the envelope R−(λ), which indicates that employing R+(λ) is more likely to provide accurate film characteristics compared to R−(λ). The appearances of R(λ) and its envelopes in Figure 3d also clarify that presence of only two apparent extrema of R(λ) at each of its envelopes should not be sufficient for precise calculation of R+(λ) and R−(λ).
- (2.2.6)
- There are notable differences in R(λ) and its two envelopes for ks > 0 and ks = 0, respectively, in the region of significant absorption in the substrate, enclosed by a red colored rectangle in Figure 3b,d. Therefore, taking into account the absorption in the substrate should result in increasing the accuracy of characterization of a thin film only from R(λ).
2.3. The Algorithm of OEMR and Its Details
3. Results
3.1. Summary of the Preparation of Samples and the Measurement of Their Reflectance Spectra
3.2. Characterizations of the a-Si Films by OEMR
3.3. Characterizations of the Films via Single Electron Oscillator DMs
3.4. Characterizations of the Films via Multiple Electron Oscillator DMs
3.5. Characterizations of the Films via a Synthetic DM including OEMR
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumar, S.; Aswal, D.K. Recent Advances in Thin Films (Materials Horizons: From Nature to Nanomaterials), 1st ed.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 211–343. [Google Scholar]
- Vanalakar, S.; Patil, S.; Deshmukh, S. Solid State Thin Films Deposition and Their Applications: Thin Film Deposition; Lambert Academic Publishing: Saarbrukken, Germany, 2020; pp. 52–147. [Google Scholar]
- Stenzel, O.; Ohlídal, M. Optical Characterization of Thin Solid Films, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 93–99. [Google Scholar]
- Stenzel, O. Optical Coatings: Material Aspects in Theory and Practice, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 35–51. [Google Scholar]
- Tompkins, H.G.; Hilfiker, J.N. Spectroscopic Ellipsometry: Practical Application to Thin Film Characterization, 1st ed.; Momentum Press: New York, NY, USA, 2015; pp. 84–88. [Google Scholar]
- Germer, T.A.; Zwinkels, J.C.; Tsai, B.K. Spectrophotometry: Accurate Measurement of Optical Properties of Materials, 1st ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 75–97. [Google Scholar]
- Stenzel, O. The Physics of Thin Film Optical Spectra, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 79–81. [Google Scholar]
- Koster, G.; Rijnders, G. In Situ Characterization of Thin Film Growth, 1st ed.; Woodhead Publishing: Sawston, UK, 2011; pp. 64–79. [Google Scholar]
- Sun, Z.; To, S.; Zhang, S.; Zhang, G. Theoretical and experimental investigation into non-uniformity of surface generation in micro-milling. Int. J. Mech. Sci. 2018, 140, 313–324. [Google Scholar] [CrossRef]
- Wemple, S.H.; DiDomenico, M., Jr. Behavior of the Electronic Dielectric Constant in Covalent and Ionic Materials. Phys. Rev. B Condens. Matter 1971, 3, 1338–1351. [Google Scholar] [CrossRef]
- Wemple, S.H. Refractive-index behavior of amorphous semiconductors and glasses. Phys. Rev. B 1973, 7, 3767–3777. [Google Scholar] [CrossRef]
- Pan, Y.; Inam, F.; Zhang, M.; Drabold, D.A. Atomistic origin of Urbach tails in amorphous silicon. Phys. Rev. Lett. 2008, 100, 206403. [Google Scholar] [CrossRef]
- Zaynobidinov, S.; Ikramov, R.G.; Jalalov, R.M. Urbach energy and the tails of the density of states in amorphous semiconductors. J. Appl. Spectrosc. 2011, 78, 223–227. [Google Scholar] [CrossRef]
- Poelman, D.; Smet, P.J. Methods for the determination of the optical constants of thin films from single transmission measurements: A critical review. J. Phys. D 2003, 36, 1850–1857. [Google Scholar] [CrossRef]
- Sadek, M.A.H. Principles and Practices of Spectrophotometer; Scholars’ Press: Chisinau, Moldova, 2019; pp. 37–50. [Google Scholar]
- Jellison, G.E.; Modine, F.A. Parameterization of the optical functions of amorphous materials in the interband region. Appl. Phys. Lett. 1996, 69, 371–373, Erratum in Appl. Phys. Lett. 1996, 69, 2137. [Google Scholar] [CrossRef]
- Blankenhagen, B.; Tonova, D.; Ullmann, J. Application of the Tauc-Lorentz formulation to the interband absorption of optical coating materials. Appl. Opt. 2002, 41, 3137–3141. [Google Scholar] [CrossRef]
- Likhachev, D.V. Evaluation of different dispersion models for the thickness-dependent optical properties of thin TiN films in combination with X-ray reflectometry data. Rev. Sci. Instrum. 2019, 90, 023909. [Google Scholar] [CrossRef]
- Campi, D.; Coriasso, C. Relationships between optical properties and band parameters in amorphous tetrahedrally bonded materials. Mater. Lett. 1988, 7, 134–137. [Google Scholar]
- Franta, D.; Cermák, M.; Vohánka, I.; Ohlídal, I. Dispersion models describing interband electronic transitions combining Tauc’s law and Lorentz model. Thin Solid Films 2017, 631, 12–22. [Google Scholar] [CrossRef]
- New Amorphous Dispersion Formula. Available online: https://www.horiba.com/fileadmin/uploads/Scientific/Downloads/OpticalSchool_CN/TN/ellipsometer/New_Amorphous_Dispersion_Formula.pdf (accessed on 17 July 2023).
- Dkhilalli, F.; Borchani, S.M.; Rasheed, M.; Barille, R.; Guidara, K.; Megdiche, M. Structural, dielectric, and optical properties of the zinc tungstate ZnWO4 compound. J. Mater. Sci. Mater. Electron. 2018, 29, 6297–6307. [Google Scholar] [CrossRef]
- Meneses, D.D.S.; Malki, M.; Echegut, P. Structure and lattice dynamics of binary lead silicate glasses investigated by infrared spectroscopy. J. Non-Cryst. Solids 2006, 352, 769–776. [Google Scholar] [CrossRef]
- Fischer, D.; Hertwig, A.; Beck, U.; Negendank, D.; Lohse, V.; Kormunda, M.; Esser, N. Dependence of the optical constants and the performance in the SPREE gas measurement on the thickness of doped tin oxide overcoatings. Appl. Surf. Sci. 2017, 421B, 480–486. [Google Scholar] [CrossRef]
- Li, Y.; Kocherga, M.; Park, S.; Lata, M.; McLamb, M.; Boreman, G.; Schmedake, T.A.; Hofmann, T. Optical dielectric function of Si(2,6-bis(benzimidazol-2’-yl)pyridine)2 determined by spectroscopic ellipsometry. Opt. Mater. Express 2019, 9, 3469. [Google Scholar] [CrossRef]
- Lorentz Dispersion Model. Available online: https://pdf4pro.com/amp/view/lorentz-dispersion-model-horiba-20da3.html (accessed on 21 June 2023).
- Foldyna, M.; Postava, K.; Bouchal, J.; Pitora, J.; Yamaguchi, T. Model dielectric function of amorphous materials including Urbach tail. Proc. SPIE 2003, 5445, 301–305. [Google Scholar]
- Márquez, E.; Ruíz-Pérez, J.J.; Ballester, M.; Márquez, A.P.; Blanco, E.; Minkov, D.; Fernandez, S.M.; Saugar, E. Optical Characterization of H-Free a-Si Layers Grown by rf-Magnetron Sputtering by Inverse Synthesis Using Matlab: Tauc–Lorentz–Urbach Parameterization. Coatings 2021, 11, 1324. [Google Scholar] [CrossRef]
- Rodruguez-de Marcos, L.; Larruquert, J.I. Analytic optical-constant model derived from Tauc-Lorentz and Urbach tail. Opt. Express 2016, 24, 28561–28572. [Google Scholar] [CrossRef]
- Ballester, M.; García, M.; Márquez, A.P.; Blanco, E.; Fernández, S.M.; Minkov, D.; Katsaggelos, A.K.; Cossairt, O.; Willomitzer, F.; Marquez, E. Application of the Holomorphic Tauc-Lorentz-Urbach Function to Extract the Optical Constants of Amorphous Semiconductor Thin Films. Coatings 2022, 12, 1549. [Google Scholar] [CrossRef]
- Franta, D.; Necas, D.; Ohlidal, I.; Giglia, A. Dispersion model for optical thin films applicable in wide spectral range. Proc. SPIE 2015, 9628, 342–353. [Google Scholar]
- Franta, D.; Necas, D.; Ohlidal, I.; Giglia, A. Optical characterization of SiO2 thin films using universal dispersion model over wide spectral range. Proc. SPIE 2016, 9628, 253–267. [Google Scholar]
- Fujiwara, H. Spectroscopic Ellipsometry: Principles and Applications, 1st ed.; Wiley: New York, NY, USA, 2007; pp. 67–96. [Google Scholar]
- Nečas, D.; Ohlídal, I.; Franta, D. Variable-angle spectroscopic ellipsometry of considerably non-uniform thin films. J. Opt. 2011, 13, 085705. [Google Scholar] [CrossRef]
- Hilfiker, J.N.; Hale, J.S.; Herzinger, C.M.; Tiwald, T.; Hong, N.; Schoche, S.; Arwin, H. Estimating depolarization with the Jones matrix quality factor. Appl. Surf. Sci. 2017, 421, 494–499. [Google Scholar] [CrossRef]
- Johnson, B.I.; Hodges, G.; Cushman, C.; Banerjee, J.; Smith, N.J.; Linford, M.R. Appropriate Backside Roughening is Key for Good Spectroscopic Ellipsometry Analysis of Transparent Materials. Vac. Technol. Coat. 2018, 19, 26–33. [Google Scholar]
- Synowicky, R.A. Suppression of backside reflections from transparent substrates. Phys. Stat. Sol. 2008, 5, 1085–1088. [Google Scholar] [CrossRef]
- Patel, D.I.; Jacobsen, C.; Hilfiker, J.N.; Linford, M.R. Fitting the Spectroscopic Ellipsometry Data from a Rather Thick (Organic?) Film on Fused Silica Part 1-Using the ‘Global Fit’. Vac. Technol. Coat. 2021, 22, 34–38. [Google Scholar]
- Hilfiker, J.N.; Linford, M.R. Fitting the Spectroscopic Ellipsometry Data from a Rather Thick (Organic?) Film on Fused Silica Part 2-Thickness non-uniformity, Absorption and Roughness. Vac. Technol. Coat. 2021, 22, 34–39. [Google Scholar]
- Kaflé, B.P. Chemical Analysis and Material Characterization by Spectrophotometry, 1st ed.; Kindle: Seattle, WA, USA, 2019; pp. 72–75. [Google Scholar]
- LAMBDA 365 UV/Vis Spectrophotometer. Available online: https://www.perkinelmer.com/product/lambda-365-spectrophotometer-uv-express-n4100020 (accessed on 23 May 2023).
- Tien, P.K. Light Waves in Thin Films and Integrated Optics. Appl. Opt. 1971, 10, 2395–2413. [Google Scholar] [CrossRef]
- Solid Sample Reflectance Measurements. Available online: https://www.shimadzu.com/an/service-support/technical-support/analysis-basics/fundamentals-uv/reflectance_measurements.html (accessed on 14 July 2023).
- Noble, S.D.; Crowe, T.G. Sample holder and methodology for measuring the reflectance and transmittance of narrow-leaf samples. Appl. Opt. 2007, 46, 2395–2413. [Google Scholar] [CrossRef]
- Minkov, D. DSc Thesis: Characterization of Thin Films and Surface Cracks by Electromagnetic Methods and Technologies; Technical University: Sofia, Bulgaria, 2018; pp. 114–119. [Google Scholar]
- Mostafa, N.Y.; Badawi, A.; Ahmed, S.I. Influence of Cu and Ag doping on structure and optical properties of In2O3 thin film prepared by spray pyrolysis. Results Phys. 2018, 10, 126–131. [Google Scholar] [CrossRef]
- Kocyigit, A.; Erdal, M.O.; Yıldırım, M. Effect of Indium Doping on Optical Parameter Properties of Sol–Gel-Derived ZnO Thin Films. Z. Naturforsch. A 2019, 74, 915–923. [Google Scholar] [CrossRef]
- Alsaad, A.M.; Al-Dairy, A.R.; Ahmad, A.A.; Al-Anbar, A.S.; Al_Bataineh, Q.M. Synthesis and characterization of as-grown doped polymerized (PMMA-PVA)/ZnO NPs hybrid thin films. Polym. Bull. 2021, 79, 2019–2040. [Google Scholar] [CrossRef]
- Althubiti, N.A.; Atta, A.; Al-Harbi, N.; Sendi, R.K.; Abdelhamied, M.M. Structural, characterization and linear/nonlinear optical properties of oxygen beam irradiated PEO/NiO composite films. Opt. Quantum Electron. 2023, 55, 348. [Google Scholar] [CrossRef]
- Thin-Film Interference. Available online: https://en.wikipedia.org/wiki/Thin-film_interference/ (accessed on 16 June 2021).
- Thin-Film Interference. Available online: https://www.britannica.com/science/light/Thin-film-interference/ (accessed on 16 June 2021).
- Minkov, D.; Vateva, E.; Skordeva, E.; Arsova, D.; Nikiforova, M. Optical properties of Ge-As-S thin films. J. Non-Cryst. Solids 1987, 90, 481–484. [Google Scholar] [CrossRef]
- Wagner, T.; Marquez, E.; Fernandez-Pena, J.; Gonzalez-Leal, J.M.; Ewen, P.J.S.; Kasap, S.O. The kinetics of the photo-induced solid-state chemical reaction in Ag/As33S67 bilayers and its reaction products. Philos. Mag. B 1999, 79, 223–237. [Google Scholar] [CrossRef]
- Swanepoel, R. Determination of the thickness and optical constants of amorphous silicon. J. Phys. E 1983, 16, 1214–1222. [Google Scholar] [CrossRef]
- Swanepoel, R. Determination of surface roughness and optical constants of inhomogeneous amorphous silicon films. J. Phys. E Sci. Instrum. 1984, 17, 896–903. [Google Scholar] [CrossRef]
- Leal, J.M.G.; Alcon, R.P.; Angel, J.A.; Minkov, D.A.; Marquez, E. Influence of substrate absorption on the optical and geometrical characterization of thin dielectric films. Appl. Opt. 2002, 41, 7300–7308. [Google Scholar] [CrossRef]
- Minkov, D.A.; Gavrilov, G.M.; Angelov, G.V.; Moreno, G.M.D.; Vazquez, C.G.; Ruano, S.M.F.; Marquez, E. Optimisation of the envelope method for characterisation of optical thin film on substrate specimens from their normal incidence transmittance spectrum. Thin Solid Films 2018, 645, 370–378. [Google Scholar] [CrossRef]
- Minkov, D.A.; Angelov, G.V.; Nestorov, R.N.; Marquez, E. Perfecting the dispersion model free characterization of a thin film on a substrate specimen from its normal incidence interference transmittance spectrum. Thin Solid Films 2020, 706, 137984. [Google Scholar] [CrossRef]
- Minkov, D.; Marquez, E.; Angelov, G.; Gavrilov, G.; Ruano, S.M.F.; Saugar, E. Further increasing the accuracy of characterization of a thin dielectric or semiconductor film on a substrate from its interference transmittance spectrum. Materials 2021, 14, 4681. [Google Scholar] [CrossRef]
- Márquez, E.; Saugar, E.; Díaz, J.M.; García-Vázquez, C.; Fernández-Ruano, S.M.; Blanco, E.; Ruiz-Pérez, J.J.; Minkov, D.A. The influence of Ar pressure on the structure and optical properties of non-hydrogenated a-Si thin films grown by rf magnetron sputtering onto room-temperature glass substrates. J. Non-Cryst. Solids 2019, 517, 32–43. [Google Scholar] [CrossRef]
- Minkov, D.A.; Angelov, G.; Nestorov, R.; Nezhdanov, A.; Usanov, D.; Kudryashov, M.; Mashin, A. Optical characterization of AsxTe100-x Films Grown by Plasma Deposition Based on the Advanced Optimizing Envelope Method. Materials 2020, 13, 2981. [Google Scholar] [CrossRef]
- Minkov, D.A.; Angelov, G.V.; Nestorov, R.N.; Marquez, E.; Blanco, E.; Ruiz-Perez, J.J. Comparative study of the accuracy of characterization of thin films a-Si on glass substrates from their interference normal incidence transmittance spectrum by the Tauc-Lorentz-Urbach, the Cody-Lorentz-Urbach, the optimized envelopes and the optimized graphical methods. Mater. Res. Express 2019, 6, 036410. [Google Scholar]
- Available online: https://qd-uki.co.uk/ellipsometers/j-a-woollam-wvase-ellipsometer-software/ (accessed on 3 May 2023).
- Available online: https://www.horiba.com/en_en/products/detail/action/show/Product/deltapsi2-software-1648/ (accessed on 23 August 2022).
- Available online: https://www.perkinelmer.com/product/kit-uvwinlab-v7-3-std-software-l6100127 (accessed on 19 April 2023).
- Available online: https://www.thermofisher.com/bg/en/home/industrial/spectroscopy-elemental-isotope-analysis/molecular-spectroscopy/uv-vis-spectrophotometry/software.html (accessed on 26 January 2023).
- Minkov, D.A. Calculation of the optical constants of a thin layer upon a transparent substrate from the reflection spectrum. J. Phys. D 1989, 22, 1157–1161. [Google Scholar] [CrossRef]
- Gonzalez-Leal, J.M.; Marquez, E.; Bernal-Oliva, A.M.; Ruiz-Perez, J.J.; Jimenez-Garay, R. Derivation of the optical constants of thermally-evaporated uniform films of binary chalcogenide glasses using only their reflection spectra. Thin Solid Films 1998, 317, 223–227. [Google Scholar] [CrossRef]
- Gungor, T.; Saka, B. Calculation of the optical constants of a thin layer upon a transparent substrate from the reflection spectrum using a genetic algorithm. Thin Solid Films 2004, 467, 319–325. [Google Scholar] [CrossRef]
- Tabassum, S.; Dong, L.; Kumar, R. Determination of dynamic variations in the optical properties of graphene oxide in response to gas exposure based on thin-film interference. Opt. Express 2018, 26, 6331–6344. [Google Scholar] [CrossRef]
- Hassanien, A.S.; Aly, K.A.; Elsaeedy, H.I.; Alqahtani, A. Optical characterization and dispersion discussions of the novel thermally evaporated thin a-S50-xGe10CdxTe40 films. Appl. Phys. A 2022, 128, 1021. [Google Scholar] [CrossRef]
- Dangi, R.; Basnet, B.; Pandey, M.; Bhusal, S.; Budhathoki, B.; Parajuli, K.; Tiwari, S.K.; Kafle, B.P. Effect of Oxygen Vacancy on the Crystallinity and Optical Band Gap in Tin Oxide Thin Film. Energies 2023, 16, 2653. [Google Scholar] [CrossRef]
- Rusli, N.; Amaratunga, G.A.J. Determination of the optical constants and thickness of thin films on slightly absorbing substrates. Appl. Opt. 1995, 34, 7914–7924. [Google Scholar] [CrossRef]
- Ruiz-Pérez, J.; Márquez, E.; Minkov, D.; Reyes, J.; Ramírez-Malo, J.B.; Villares, P.; Jiménez-Garay, R. Computation of the optical constants of thermally-evaporated thin films of GeSe2 chalcogenide glass from their reflection spectra. Phys. Scr. 1996, 53, 76–82. [Google Scholar] [CrossRef]
- Márquez, E.; González-Leal, J.M.; Prieto-Alcón, R.; Vlcek, M.; Stronski, A.; Wagner, T.; Minkov, D. Optical characterization of thermally evaporated thin films of As40S40Se20 chalcogenide glass by reflectance measurements. Appl. Phys. A 1998, 67, 371–378. [Google Scholar]
- Dahshan, A.; Sharma, P.; Aly, K.A. Optical constants of Ge-Sb-Se-I chalco-halide glasses using a single reflectance spectrum. Infrared Phys. Technol. 2019, 102, 102997. [Google Scholar] [CrossRef]
- Boukhris, I.; Kebaili, I.; Znaidia, S.; Neffati, R.; Hegazy, H.H.; Aly, K.A.; Mehta, N.; Dahshan, A. Optical constants of Sn-doped amorphous Ge-As-Te thin films and their physical characterization. Phys. B Condens. 2020, 583, 412066. [Google Scholar] [CrossRef]
- Ruiz-Perez, J.J.; Gonzalez-Leal, J.M.; Minkov, D.; Marquez, E. Method for determining the optical constants of thin dielectric films with variable thickness using only their shrunk reflection spectra. J. Phys. D 2001, 34, 2489–2496. [Google Scholar] [CrossRef]
- Pisarkiewicz, T. Reflection spectrum for a thin film with non-uniform thickness. J. Phys. D. 1994, 27, 160–164. [Google Scholar] [CrossRef]
- Necas, D.; Ohlıdal, I.; Franta, D. The reflectance of non-uniform thin films. J. Opt. A Pure Appl. Opt. 2009, 11, 045202. [Google Scholar] [CrossRef]
- Minkov, D. Flow-graph approach for optical analysis of planar structures. Appl. Opt. 1994, 33, 7698–7703. [Google Scholar] [CrossRef]
- Gonzalez-Leal, J.M.; Prieto-Alcon, R.; Stuchlik, M.; Vlcek, M.; Elliott, S.R.; Marquez, E. Determination of the surface roughness and refractive index of amorphous As40S60 films deposited by spin coating. Opt. Mater. 2004, 27, 147–154. [Google Scholar] [CrossRef]
- Minkov, D.; Swanepoel, R. Computerization of the optical characterization of a thin dielectric film. Opt. Eng. 1993, 32, 3333–3337. [Google Scholar] [CrossRef]
- Levenhuk Zoom & Joy. Available online: https://www.levenhuk.com/catalogue/accessories/levenhuk-n18-ng-prepared-slides-set/#.XsbUvmgzaUk (accessed on 6 June 2020).
- Tripathy, S.K. Refractive indices of semiconductors from energy gaps. Opt. Mater. 2015, 46, 240–246. [Google Scholar] [CrossRef]
- Minkov, D.; Nedelchev, L.; Angelov, G.; Marquez, E.; Blagoeva, B.; Mateev, G.; Nazarova, D. Hybrid Dispersion Model Characterization of PAZO Azopolymer Thin Films over the Entire Transmittance Spectrum Measured in the UV/VIS/NIR Spectral Region. Materials 2022, 15, 8617. [Google Scholar] [CrossRef]
- Principles of UV/Vis Spectroscopy (7) Bandwidth. Available online: https://www.jasco-global.com/principle/principles-of-uv-vis-spectroscopy-7-bandwidth/ (accessed on 24 April 2023).
- Gavrilov, G.M.; Minkov, D.A.; Marquez, E.; Ruano, S.M.F. Advanced computer drawing envelopes of transmittance spectra of thin film specimens. Int. J. Adv. Res. Sci. Eng. Technol. 2016, 3, 163–168. [Google Scholar]
- Minkov, D.A.; Gavrilov, G.M.; Marquez, E.; Ruano, S.M.F.; Stoynova, A.V. Development of algorithm for computer drawing envelopes of interference reflectance spectra for thin film specimens. Optik 2017, 132, 320–328. [Google Scholar] [CrossRef]
- Nestorov, R.N. Selection of error metric for accurate characterization of a thin dielectric or semiconductor film on glass substrate by the optimizing envelope method. Int. J. Adv. Res. Sci. Eng. Technol. 2020, 7, 1–11. [Google Scholar]
- Fixed Angle Reflectance Accessory—Fixed 60. Available online: https://www.perkinelmer.com/product/relative-specular-reflectance-accessory-b0086703 (accessed on 18 April 2023).
- Relative Specular Reflectance Accessory, 6 Degrees for PerkinElmer Lambda 800/900-B0086703. Available online: https://uvison.com/chromatography-supplies/perkinelmer/perkinelmer-accessories/perkinelmer-relative-specular-reflectance-accessory-6-degrees-for-perkinelmer-lambda-800-900-b0086703 (accessed on 17 May 2023).
- Bruggeman, D.A.G. Calculation of various physical constants of heterogeneous substances and dielectric constants and conductivities of mixed bodies of isotropic substances. Ann. Phys. 1935, 416, 636–664. [Google Scholar] [CrossRef]
- Guerrero, E.; Strubbe, D.A. Computational generation of voids in a-Si and a-Si:H by cavitation at low density. Phys. Rev. Mater. 2020, 4, 025601. [Google Scholar] [CrossRef]
- Chen, H.; Shen, W.Z. Perspectives in the characteristics and applications of Tauc-Lorentz dielectric function model. Eur. Phys. J. B 2005, 43, 503–507. [Google Scholar] [CrossRef]
- Dodd, M.J.A.; Polman, A.; Zijlstra, T.; Drift, E.W.J.M. Amorphous silicon waveguides for microphotonics. J. Appl. Phys. 2002, 92, 649–653. [Google Scholar] [CrossRef]
- Brent, R.P. Algorithms for Minimization without Derivatives, 1st ed.; Dover Publications: Mineola, NY, USA, 2013; pp. 21–48. [Google Scholar]
- Kochenderfer, M.J.; Wheeler, T.A. Algorithms for Optimization, 1st ed.; MIT Press: Cambridge, MA, USA, 2019; pp. 103–154. [Google Scholar]
- Floris, F.; Fornasari, L.; Marini, A.; Bellani, V.; Banfi, F.; Roddaro, S.; Ercolani, D.; Rocci, M.; Beltram, F.; Cecchini, M.; et al. Self-Assembled InAs Nanowires as Optical Reflectors. Nanomaterials 2017, 7, 7110400. [Google Scholar] [CrossRef] [PubMed]
- Floris, F.; Fornasari, L.; Bellani, V.; Marini, A.; Banfi, F.; Marabelli, F.; Beltram, F.; Ercolani, D.; Battiato, S.; Sorba, L.; et al. Strong Modulations of Optical Reflectance in Tapered Core–Shell Nanowires. Materials 2019, 12, 12213572. [Google Scholar] [CrossRef] [PubMed]
Attributes of the Sample; and the Characterization | Film Material, Sample, [Reference] | c (nm), Δdc (nm), [l1c, l2c] | RE(c) (%) |
---|---|---|---|
uniform film, transparent substrate; EMT, common smoothing of T(λ), [l1c, l2c] is not optimized | a-Si, A029, [60] | 1173, 0, [1, 12] | 0.215 |
a-Si, A074, [60] | 1269, 0, [2, 14] | 0.213 | |
uniform film, absorbing substrate; EMT, common smoothing of T(λ), [l1c, l2c] is not optimized | a-As40S60, [56] | 1409, 0, [11, 20] | 0.261 |
non-uniform film, absorbing substrate; EMT, common smoothing of T(λ), Δdc and [l1c, l2c] are not optimized | a-As40S60, [56] | 2689, 50, [3, 24] | 0.496 |
non-uniform film, absorbing substrate; OEMT, external smoothing of T(λ), l1c = 1, Δdc and l2c are optimized | a-Si, A041, [58] | 3929.9, 53.5, [1, 17] | 0.245 |
a-As98Te2, [59] | 1983.8, 22.7, [1, 12] | 0.133 | |
non-uniform film, absorbing substrate; OEMT, external smoothing of T(λ), Δdc and [l1c, l2c] are optimized | a-Si, A041, [59] | 3949.2, 53.0, [5, 14] | 0.090 |
a-As98Te2, [61] | 1983.2, 23.9, [3, 9] | 0.043 |
FILM SP1 | ||||||
---|---|---|---|---|---|---|
ERM | ERMc | [l1c, l2c] | m1c | ∆dc (nm) | c (nm) | RE(c) (%) |
DECONVOLUTION ENVELOPES OF R(λ) | ||||||
ERM1 | 6.61 × 10−4 | [2, 7] | 2 | 10.7 | 672.5 | |
ERM2 | 0.1263 nm | [2, 7] | 2 | 10.7 | 672.5 | 0.1127 |
INTERNAL ENVELOPES OF R(λ) | ||||||
ERM1 | 5.63 × 10−4 | [2, 7] | 2 | 11.7 | 674.5 | |
ERM2 | 0.1144 nm | [2, 7] | 2 | 11.8 | 674.7 | 0.1017 |
MEDIUM ENVELOPES OF R(λ) | ||||||
ERM1 | 5.64 × 10−4 | [2, 7] | 2 | 11.6 | 674.5 | |
ERM2 | 0.1127 nm | [2, 7] | 2 | 11.7 | 674.5 | 0.1003 |
EXTERNAL ENVELOPES OF R(λ) | ||||||
ERM1 | 4.62 × 10−4 | [2, 7] | 2 | 11.4 | 674.2 | |
ERM2 | 0.1115 nm | [2, 7] | 2 | 11.5 | 674.4 | 0.0992 |
Optimized thickness parameters | 11.5 | 674.3 | ||||
FILM SP2 | ||||||
ERM | ERMc | [l1c, l2c] | m1c | ∆dc (nm) | c (nm) | RE(c) (%) |
DECONVOLUTION ENVELOPES OF R(λ) | ||||||
ERM1 | 1.72 × 10−3 | [7, 44] | 10 | 42.5 | 3589.9 | |
ERM2 | 0.2540 nm | [5, 44] | 11 | 39.8 | 3701.6 | 0.2745 |
INTERNAL ENVELOPES OF R(λ) | ||||||
ERM1 | 1.20 × 10−3 | [8, 40] | 11 | 40.7 | 3713.0 | |
ERM2 | 0.2100 nm | [5, 41] | 11 | 40.5 | 3704.1 | 0.2098 |
MEDIUM ENVELOPES OF R(λ) | ||||||
ERM1 | 1.15 × 10−3 | [4, 40] | 12 | 37.5 | 3837.7 | |
ERM2 | 0.2133 nm | [4, 40] | 12 | 37.4 | 3835.5 | 0.2224 |
EXTERNAL ENVELOPES OF R(λ) | ||||||
ERM1 | 1.02 × 10−3 | [1, 39] | 12 | 37.0 | 3848.7 | |
ERM2 | 0.1782 nm | [3, 39] | 12 | 36.9 | 3845.4 | 0.1715 |
Optimized thickness parameters | 37.0 | 3847.1 |
FILM SP1 | ||||||||
---|---|---|---|---|---|---|---|---|
1TL | ||||||||
ATL1 (eV) | ETL1 (eV) | BTL1 (eV) | Eg (eV) | εr (∞) | c (nm) | Δdc (nm) | FOM | |
91.25 | 3.281 | 1.064 | 1.256 | 2.152 | 742.8 | 30.6 | 19.16 | |
1NA | ||||||||
fNA1 | ENA1 (eV) | BNA1 (eV) | Eg (eV) | nc (∞) | c (nm) | Δdc (nm) | FOM | |
0.1222 | 3.543 | 0.6026 | 0.000 | 2.604 | 712.2 | 25.7 | 19.30 | |
TLUR | ||||||||
ATL1 (eV) | ETL1 (eV) | BTL1 (eV) | Eg (eV) | Eb (eV) | c (nm) | Δdc (nm) | FOM | |
134.0 | 3.313 | 1.269 | 1.450 | 2.236 | 729.9 | 27.9 | 14.65 | |
TLUF | ||||||||
ATL1 (eV) | ETL1 (eV) | BTL1 (eV) | Eg (eV) | Eb (eV) | εr (∞) | c (nm) | Δdc (nm) | FOM |
130.2 | 3.326 | 1.304 | 1.394 | 2.211 | 1.000 | 718.3 | 24.8 | 13.66 |
FILM SP2 | ||||||||
1TL | ||||||||
ATL1 (eV) | ETL1 (eV) | BTL1 (eV) | Eg (eV) | εr (∞) | c (nm) | Δdc (nm) | FOM | |
46.61 | 2.990 | 0.9331 | 0.6684 | 5.992 | 3846.0 | 40.0 | 17.35 | |
1NA | ||||||||
fNA1 | ENA1 (eV) | BNA1 (eV) | Eg (eV) | nc (∞) | c (nm) | Δdc (nm) | FOM | |
0.1151 | 3.224 | 0.5885 | 0.000 | 3.197 | 3700.5 | 35.9 | 15.78 | |
TLUR | ||||||||
ATL1 (eV) | ETL1 (eV) | BTL1 (eV) | Eg (eV) | Eb (eV) | c (nm) | Δdc (nm) | FOM | |
88.81 | 2.694 | 2.177 | 0.6941 | 0.8318 | 3571.7 | 39.7 | 51.1 | |
TLUF | ||||||||
ATL1 (eV) | ETL1 (eV) | BTL1 (eV) | Eg (eV) | Eb (eV) | εr (∞) | c (nm) | Δdc (nm) | FOM |
96.78 | 3.382 | 1.550 | 0.8953 | 1.358 | 2.814 | 3701.9 | 33.5 | 7.65 |
FILM SP1 | |||||||||
---|---|---|---|---|---|---|---|---|---|
3TL with 1PE and 1GA | |||||||||
ATL1 (eV) | ETL1 (eV) | BTL1 (eV) | ATL2 (eV) | ETL2 (eV) | BTL2 (eV) | ATL3 (eV) | ETL3 (eV) | BTL3 (eV) | Eg (eV) |
10.63 | 4.195 | 0.5072 | 57.52 | 3.673 | 0.9566 | 15.51 | 2.992 | 0.9086 | 0.7942 |
APE1 (eV2) | EPE1 (eV) | fGA1 | EGA1 (eV) | BGA1 (eV) | c (nm) | Δdc (nm) | FOM | ||
0.0733 | 0.3493 | 0.3619 | 0.7070 | 0.4239 | 664.7 | 0.0664 | 6.80 | ||
3UD with UT and 1GA | |||||||||
AUD1 | EUD1 (eV) | BUD1 (eV) | AUD2 | EUD2 (eV) | BUD2 (eV) | AUD3 | EUD3 (eV) | BUD3 (eV) | Eg (eV) |
8.407 | 5.024 | 0.004290 | 92.22 | 3.600 | 0.5679 | 18.06 | 2.919 | 0.5170 | 1.209 |
Nvc | Eh (eV) | fUT | EU (eV) | fGA1 | EGA1 (eV) | BGA1 (eV) | c (nm) | Δdc (nm) | FOM |
286.4 | 33.11 | 0.04288 | 0.7972 | 0.00055 | 0.00042 | 0.3111 | 670.4 | 5.0 | 6.64 |
OEMR with 3TL | |||||||||
ATL1 (eV) | ETL1 (eV) | BTL1 (eV) | ATL2 (eV) | ETL2 (eV) | BTL2 (eV) | ATL3 (eV) | ETL3 (eV) | BTL3 (eV) | Eg (eV) |
65.74 | 3.746 | 1.199 | 12.73 | 3.284 | 0.7021 | 8.399 | 2.790 | 0.7875 | 0.8749 |
Ew (eV) | Ec (eV) | FOM | |||||||
1.663 | 1.520 | 6.55 | |||||||
OEMR with 3NA | |||||||||
fNA1 | ENA1 (eV) | BNA1 (eV) | fNA2 | ENA2 (eV) | BNA2 (eV) | fNA3 | ENA3 (eV) | BNA3 (eV) | Eg (eV) |
1.147 | 4.268 | 1.309 | 0.4397 | 1.686 | 0.4883 | 0.01164 | 1.545 | 0.03718 | 1.428 |
Ew (eV) | Ec (eV) | FOM | |||||||
1.718 | 1.528 | 5.46 | |||||||
FILM SP2 | |||||||||
3TL with 1PE and 1GA | |||||||||
ATL1 (eV) | ETL1 (eV) | BTL1 (eV) | ATL2 (eV) | ETL2 (eV) | BTL2 (eV) | ATL3 (eV) | ETL3 (eV) | BTL3 (eV) | Eg (eV) |
99.56 | 3.236 | 1.158 | 32.91 | 2.544 | 0.9799 | 48.17 | 1.683 | 0.7690 | 1.424 |
APE1 (eV2) | EPE1 (eV) | fGA1 | EGA1 (eV) | BGA1 (eV) | c (nm) | Δdc (nm) | FOM | ||
272.0 | 10.09 | 1.038 | 1.643 | 0.4271 | 3758.3 | 35.9 | 5.49 | ||
3UD with UT and 1GA | |||||||||
AUD1 | EUD1 (eV) | BUD1 (eV) | AUD2 | EUD2 (eV) | BUD2 (eV) | AUD3 | EUD3 (eV) | BUD3 (eV) | Eg (eV) |
14.56 | 3.271 | 0.6323 | 8.882 | 1.991 | 1.388 | 0.2774 | 1.5848 | 0.001321 | 1.593 |
Nvc | Eh (eV) | fUT | EU (eV) | fGA1 | EGA1 (eV) | BGA1 (eV) | c (nm) | Δdc (nm) | FOM |
345.7 | 41.70 | 0.3301 | 0.1662 | 0.000716 | 1.2989 | 0.374692 | 3741.5 | 35.2 | 5.84 |
OEMR with 3TL | |||||||||
ATL1 (eV) | ETL1 (eV) | BTL1 (eV) | ATL2 (eV) | ETL2 (eV) | BTL2 (eV) | ATL3 (eV) | ETL3 (eV) | BTL3 (eV) | Eg (eV) |
5.579 | 3.300 | 0.6385 | 0.2499 | 2.837 | 0.3954 | 8.623 | 2.680 | 0.4194 | 0.00022 |
Ew (eV) | Ec (eV) | FOM | |||||||
2.338 | 1.219 | 16.22 | |||||||
OEMR with 3NA | |||||||||
fNA1 | ENA1 (eV) | BNA1 (eV) | fNA2 | ENA2 (eV) | BNA2 (eV) | fNA3 | ENA3 (eV) | BNA3 (eV) | Eg (eV) |
0.7039 | 4.901 | 0.9377 | 0.01762 | 1.535 | 0.1140 | 0.8674 | 1.242 | 0.3389 | 1.232 |
Ew (eV) | Ec (eV) | FOM | |||||||
1.320 | 1.305 | 5.18 |
FILM SP1 | |||||
---|---|---|---|---|---|
Characterization method | FOM | c (nm) | REc(c) (%) | ∆dc (nm) | REc(∆dc) (%) |
OEMR with 3NA | 5.46 | 674.3 | - | 11.5 | - |
TLUF | 13.66 | 718.3 | 6.5 | 24.8 | 115.7 |
3UD with UT and 1GA | 6.64 | 670.4 | −0.6 | 5.0 | −56.5 |
FILM SP2 | |||||
Characterization method | FOM | c (nm) | RE(c) (%) | ∆dc (nm) | REc(∆dc) (%) |
OEMR with 3NA | 5.18 | 3847.1 | - | 37.0 | - |
TLUF | 7.65 | 3701.9 | −3.8 | 33.5 | −9.5 |
3TL with 1PE and 1GA | 5.49 | 3758.3 | −2.3 | 35.9 | −3.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minkov, D.; Angelov, G.; Marquez, E.; Radonov, R.; Rusev, R.; Nikolov, D.; Ruano, S. Increasing the Accuracy of the Characterization of a Thin Semiconductor or Dielectric Film on a Substrate from Only One Quasi-Normal Incidence UV/Vis/NIR Reflectance Spectrum of the Sample. Nanomaterials 2023, 13, 2407. https://doi.org/10.3390/nano13172407
Minkov D, Angelov G, Marquez E, Radonov R, Rusev R, Nikolov D, Ruano S. Increasing the Accuracy of the Characterization of a Thin Semiconductor or Dielectric Film on a Substrate from Only One Quasi-Normal Incidence UV/Vis/NIR Reflectance Spectrum of the Sample. Nanomaterials. 2023; 13(17):2407. https://doi.org/10.3390/nano13172407
Chicago/Turabian StyleMinkov, Dorian, George Angelov, Emilio Marquez, Rossen Radonov, Rostislav Rusev, Dimitar Nikolov, and Susana Ruano. 2023. "Increasing the Accuracy of the Characterization of a Thin Semiconductor or Dielectric Film on a Substrate from Only One Quasi-Normal Incidence UV/Vis/NIR Reflectance Spectrum of the Sample" Nanomaterials 13, no. 17: 2407. https://doi.org/10.3390/nano13172407
APA StyleMinkov, D., Angelov, G., Marquez, E., Radonov, R., Rusev, R., Nikolov, D., & Ruano, S. (2023). Increasing the Accuracy of the Characterization of a Thin Semiconductor or Dielectric Film on a Substrate from Only One Quasi-Normal Incidence UV/Vis/NIR Reflectance Spectrum of the Sample. Nanomaterials, 13(17), 2407. https://doi.org/10.3390/nano13172407