Low-Temperature Solution-Processed HfZrO Gate Insulator for High-Performance of Flexible LaZnO Thin-Film Transistor
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.; Li, J.; Zhang, X.W.; Jiang, X.Y.; Zhang, Z.L. High Performance ZnO-Thin-Film Transistor with Ta2O5 Dielectrics Fabricated at Room Temperature. Appl. Phys. Lett. 2009, 95, 23–26. [Google Scholar] [CrossRef]
- Bukke, R.N.; Saha, J.K.; Mude, N.N.; Kim, Y.; Lee, S.; Jang, J. Lanthanum Doping in Zinc Oxide for Highly Reliable Thin-Film Transistors on Flexible Substrates by Spray Pyrolysis. ACS Appl. Mater. Interfaces 2020, 12, 35164–35174. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Lan, L. Solution-Processed Metal-Oxide Thin-Film Transistors: A Review of Recent Developments. Nanotechnology 2019, 30, 312001. [Google Scholar] [CrossRef]
- Jeong, H.J.; Ok, K.C.; Park, J.; Lim, J.; Cho, J.; Park, J.S. Stability Improvement of In-Sn-Ga-O Thin-Film Transistors at Low Annealing Temperatures. IEEE Electron Device Lett. 2015, 36, 1160–1162. [Google Scholar] [CrossRef]
- Park, W.; Park, J.-H.; Eun, J.-S.; Lee, J.; Na, J.-H.; Lee, S.-H.; Jang, J.; Kang, I.M.; Kim, D.-K.; Bae, J.-H. Low-Temperature Enhancement-Mode Amorphous Oxide Thin-Film Transistors in Solution Process Using a Low-Pressure Annealing. Nanomaterials 2023, 13, 2231. [Google Scholar] [CrossRef]
- Shin, S.W.; Cho, J.E.; Lee, H.M.; Park, J.S.; Kang, S.J. Photoresponses of InSnGaO and InGaZnO Thin-Film Transistors. RSC Adv. 2016, 6, 83529–83533. [Google Scholar] [CrossRef]
- Faber, H.; Butz, B.; Dieker, C.; Spiecker, E.; Halik, M. Fully Patterned Low-Voltage Transparent Metal Oxide Transistors Deposited Solely by Chemical Spray Pyrolysis. Adv. Funct. Mater. 2013, 23, 2828–2834. [Google Scholar] [CrossRef]
- Tue, P.T.; Miyasako, T.; Li, J.; Tu, H.T.C.; Inoue, S.; Tokumitsu, E.; Shimoda, T. High-performance solution-processed ZrInZnO thin-film transistors. IEEE Trans. Electron Devices 2013, 60, 320–326. [Google Scholar] [CrossRef]
- Park, J.H.; Yoo, Y.B.; Lee, K.H.; Jang, W.S.; Oh, J.Y.; Chae, S.S.; Lee, H.W.; Han, S.W.; Baik, H.K. Boron doped peroxo-zirconium oxide dielectric for high-performance, low-temperature, solution-processed indium oxide thin-film transistor. ACS Appl. Mater. Interfaces 2013, 5, 8067–8075. [Google Scholar] [CrossRef]
- Bukke, R.N.; Avis, C.; Naik, M.N.; Jang, J. Remarkable Increase in Field Effect Mobility of Amorphous IZTO Thin-Film Transistors with Purified ZrOx Gate Insulator. IEEE Electron Device Lett. 2018, 39, 371–374. [Google Scholar] [CrossRef]
- Wang, D.; Jiang, Z.; Li, L.; Zhu, D.; Wang, C.; Han, S.; Fang, M.; Liu, X.; Liu, W.; Cao, P.; et al. High-Performance Thin-Film Transistors with ZnO:H/ZnO Double Active Layers Fabricated at Room Temperature. Nanomaterials 2023, 13, 1422. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.-J.; Lee, S.H.; Bak, S.-Y.; Han, T.-H.; Kim, S.; Yi, M. Performance Improvement of ZnSnO Thin-Film Transistors with Low-Temperature Self-Combustion Reaction. Electronics 2021, 10, 1099. [Google Scholar] [CrossRef]
- Liu, G.; Liu, A.O.; Zhu, H.; Shin, B.; Fortunato, E.; Martins, R.; Wang, Y.; Shan, F. Low-Temperature, Nontoxic Water-Induced Metal-Oxide Thin Films and Their Application in Thin-Film Transistors. Adv. Funct. Mater. 2015, 25, 2564–2572. [Google Scholar] [CrossRef]
- Yeom, H.I.; Ko, J.B.; Mun, G.; Park, S.H.K. High Mobility Polycrystalline Indium Oxide Thin-Film Transistors by Means of Plasma-Enhanced Atomic Layer Deposition. J. Mater. Chem. C 2016, 4, 6873–6880. [Google Scholar] [CrossRef]
- Li, J.; Huang, C.X.; Fu, Y.Z.; Zhang, J.H.; Jiang, X.; Zhang, Y. Amorphous LaZnSnO Thin Films by a Combustion Solution Process and Application in Thin Film Transistors. Electron. Mater. Lett. 2016, 12, 76–81. [Google Scholar] [CrossRef]
- Parthiban, S.; Kwon, J.Y. Role of Dopants as a Carrier Suppressor and Strong Oxygen Binder in Amorphous Indium-Oxide-Based Field Effect Transistor. J. Mater. Res. 2014, 29, 1585–1596. [Google Scholar] [CrossRef]
- Bukke, R.N.; Naik Mude, N.; Mobaidul Islam, M.; Jang, J. Improvement of Metal-Oxide Films by Post Atmospheric Ar/O2 Plasma Treatment for Thin Film Transistors with High Mobility and Excellent Stability. Appl. Surf. Sci. 2021, 568, 150947. [Google Scholar] [CrossRef]
- Kim, H.A.; Kim, J.O.; Hur, J.S.; Son, K.S.; Lim, J.H.; Cho, J.; Jeong, J.K. Achieving High Mobility in IGTO Thin-Film Transistors at a Low Temperature via Film Densification. IEEE Trans. Electron Devices 2018, 65, 4854–4860. [Google Scholar] [CrossRef]
- Hur, J.S.; Kim, J.O.; Kim, H.A.; Jeong, J.K. Stretchable Polymer Gate Dielectric by Ultraviolet-Assisted Hafnium Oxide Doping at Low Temperature for High Performance Indium Gallium Tin Oxide Transistors. ACS Appl. Mater. Interfaces 2019, 11, 21675–21685. [Google Scholar] [CrossRef]
- Wu, Y.; Lan, L.; He, P.; Lin, Y.; Deng, C.; Chen, S.; Peng, J. Influence of Hydrogen Ions on the Performance of Thin-Film Transistors with Solution-Processed AlOx Gate Dielectrics. Appl. Sci. 2021, 11, 4393. [Google Scholar] [CrossRef]
- Kim, D.H.; Cha, H.S.; Jeong, H.S.; Hwang, S.H.; Kwon, H.I. Effects of Active Layer Thickness on the Electrical Characteristics and Stability of High-Mobility Amorphous Indium–Gallium–Tin Oxide Thin-Film Transistors. Electronics 2021, 10, 1295. [Google Scholar] [CrossRef]
- Bukke, R.N.; Jang, J. Gel-Based Precursors for the High-Performance of n-Channel GaInSnZnO and p-Channel CuGaSnSO Thin-Film Transistors. RSC Adv. 2021, 11, 34392–34401. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; He, G.; Zhang, C.; Yang, B.; Xia, Y.; Alam, F.; Zhang, Y. Water-Derived All-Oxide Thin-Film Transistors with ZrAlOx Gate Dielectrics and Exploration in Digital Circuits. IEEE Trans. Electron Devices 2019, 66, 4198–4204. [Google Scholar] [CrossRef]
- Bukke, R.N.; Mude, N.N.; Lee, J.; Avis, C.; Jang, J. Effect of Hf Alloy in ZrOx Gate Insulator for Solution Processed a-IZTO Thin Film Transistors. IEEE Electron Device Lett. 2019, 40, 32–35. [Google Scholar] [CrossRef]
- Kim, H.; Maeng, S.; Lee, S.; Kim, J. Improved Performance and Operational Stability of Solution-Processed InGaSnO (IGTO) Thin Film Transistors by the Formation of Sn-O Complexes. ACS Appl. Electron. Mater. 2021, 3, 1199–1210. [Google Scholar] [CrossRef]
- Chen, S.; Li, Y.; Lin, Y.; He, P.; Long, T.; Deng, C.; Chen, Z.; Chen, G.; Tao, H.; Lan, L.; et al. Inkjet-Printed Top-Gate Thin-Film Transistors Based on InGaSnO Semiconductor Layer with Improved Etching Resistance. Coatings 2020, 10, 425. [Google Scholar] [CrossRef]
- Li, J.; Huang, C.X.; Zhao, C.Y.; Zhong, D.Y.; Zhang, J.H.; Li, X.F. Feasibility of Atomic Layer Deposited AlZrOx Film to Achieve High Performance and Good Stability of ZnSnO-TFT. IEEE Trans. Electron Devices 2017, 64, 4959–4964. [Google Scholar] [CrossRef]
- Girtan, M.; Hrostea, L.; Boclinca, M.; Negulescu, B. Study of Oxide/Metal/Oxide Thin Films for Transparent Electronics and Solar Cells Applications by Spectroscopic Ellipsometry. AIMS Mater. Sci. 2017, 4, 594–613. [Google Scholar] [CrossRef]
- He, F.; Qin, Y.; Wan, L.; Su, J.; Lin, Z.; Zhang, J.; Chang, J.; Wu, J.; Hao, Y. Metal-oxide heterojunctions for high performance solution grown oxide thin film transistors. Appl. Surf. Sci. 2020, 527, 146774–146781. [Google Scholar] [CrossRef]
- Bukke, R.N.; Mude, N.N.; Bae, J.; Jang, J. Nano-Scale Ga-O Interface Engineering for High-Performance of ZnO-Based Thin-Film Transistors. ACS Appl. Mater. Interfaces 2022, 14, 41508–41519. [Google Scholar] [CrossRef]
- Carlos, E.; Martins, R.; Fortunato, E.; Branquinho, R. Solution Combustion Synthesis: Towards a Sustainable Approach for Metal Oxides. Chem. Eur. J. 2020, 26, 9099–9125. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.-T.; Liu, P.-T.; Kuo, P.-Y.; Chang, C.-M.; Liu, I.-H.; Kuo, Y. Numerical Analysis of Oxygen-Related Defects in Amorphous In-W-O Nanosheet Thin-Film Transistor. Nanomaterials 2021, 11, 3070. [Google Scholar] [CrossRef] [PubMed]
- Park, J.W.; Kang, B.H.; Kim, H.J. A Review of Low-Temperature Solution-Processed Metal Oxide Thin-Film Transistors for Flexible Electronics. Adv. Funct. Mater. 2019, 21, 1904632–1904671. [Google Scholar]
- Singh, A.K.; Kharche, V.V.; Chakrabarti, P. Performance Optimization of ZnO based Thin Film Transistor for Future Generation Display Technology. In Proceedings of the 2017 14th IEEE India Council International Conference (INDICON), Roorkee, India, 15–17 December 2017; pp. 1–5. [Google Scholar]
- Afouxenidis, D.; Mazzocco, R.; Vourlias, G.; Livesley, P.J.; Krier, A.; Milne, W.I.; Kolosov, O.; Adamopoulos, G. ZnO-Based Thin Film Transistors Employing Aluminum Titanate Gate Dielectrics Deposited by Spray Pyrolysis at Ambient Air. ACS Appl. Mater. Interfaces 2015, 7, 7334–7341. [Google Scholar] [CrossRef]
- Esro, M.; Vourlias, G.; Somerton, C.; Milne, W.I.; Adamopoulos, G. High-Mobility ZnO Thin Film Transistors Based on Solution-processed Hafnium Oxide Gate Dielectrics. Adv. Funct. Mater. 2015, 25, 134–141. [Google Scholar] [CrossRef]
- Ding, X.; Yang, B.; Xu, H.; Qi, J.; Li, X.; Zhang, J. Low-Temperature Fabrication of IZO Thin Film for Flexible Transistors. Nanomaterials 2021, 11, 2552. [Google Scholar] [CrossRef]
- Jeong, Y.; Pearson, C.; Kim, H.G.; Park, M.Y.; Kim, H.; Do, L.M.; Petty, M.C. Optimization of a Solution-Processed SiO2 Gate Insulator by Plasma Treatment for Zinc Oxide Thin Film Transistors. ACS Appl. Mater. Interfaces 2016, 8, 2061–2070. [Google Scholar] [CrossRef]
- Xu, H.; Ding, X.; Qi, J.; Yang, X.; Zhang, J. A Study on Solution-Processed Y2O3 Films Modified by Atomic Layer Deposition Al2O3 as Dielectrics in ZnO Thin Film Transistor. Coatings 2021, 11, 969. [Google Scholar] [CrossRef]
- Liu, H.; Jing, L.; He, K.; Qu, D.; Li, Y.; Minari, T.; Tao, R.; Lu, X.; Liu, J. High Performance and Hysteresis-Free a-IGZO Thin Film Transistors Based on Spin-coated Hafnium Oxide Gate Dielectrics. IEEE Electron Device Lett. 2023, 1. [Google Scholar] [CrossRef]
- Kim, Y.G.; Lv, D.; Huang, J.; Bukke, R.N.; Chen, H.; Jang, J. Artificial Indium-Tin-Oxide Synaptic Transistor by Inkjet Printing Using Solution-Processed ZrOx Gate Dielectric. Phys. Status Solidi A 2020, 217, 2000314–2000321. [Google Scholar] [CrossRef]
Active/GI | TFT W/L [μm/μm] | Mobility [cm2V−1s−1] | SS [mV/dec] | Stability (ΔVTH, [V]) | Ref. |
---|---|---|---|---|---|
(a) LaZnO/(b) ZrOx | 50/10 | 8.31 | 218 | PBTS (0.10) | [2] |
(b) ZnO/(b) AlOx | 60/10 | 6.05 | 550 | - | [34] |
(a) ZnO/(a) AlTiOx | 2000/20 | 10.00 | 550 | - | [35] |
(a) ZnO/(a) HfOx | 2000/20 | 42.00 | - | - | [36] |
(b) ZnO/(b) LaZrOx | 50/10 | 11.58 | 249 | PBS (0.20) | [37] |
(b) ZnO/(b) SiO2 | 1000/50 | 3.20 | 600 | - | [38] |
(a) ZnO/(b) ZrOx | 50/10 | 12.76 | 260 | PBS (0.01) | [39] |
(a) LaZnO/(b) HfZrO | 50/10 | 19.06 | 256 | PBTS (0.23) | [This work] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.; Bukke, R.N.; Bae, J.; Jang, J. Low-Temperature Solution-Processed HfZrO Gate Insulator for High-Performance of Flexible LaZnO Thin-Film Transistor. Nanomaterials 2023, 13, 2410. https://doi.org/10.3390/nano13172410
Chang Y, Bukke RN, Bae J, Jang J. Low-Temperature Solution-Processed HfZrO Gate Insulator for High-Performance of Flexible LaZnO Thin-Film Transistor. Nanomaterials. 2023; 13(17):2410. https://doi.org/10.3390/nano13172410
Chicago/Turabian StyleChang, Yeoungjin, Ravindra Naik Bukke, Jinbaek Bae, and Jin Jang. 2023. "Low-Temperature Solution-Processed HfZrO Gate Insulator for High-Performance of Flexible LaZnO Thin-Film Transistor" Nanomaterials 13, no. 17: 2410. https://doi.org/10.3390/nano13172410
APA StyleChang, Y., Bukke, R. N., Bae, J., & Jang, J. (2023). Low-Temperature Solution-Processed HfZrO Gate Insulator for High-Performance of Flexible LaZnO Thin-Film Transistor. Nanomaterials, 13(17), 2410. https://doi.org/10.3390/nano13172410