Advances in Surface-Enhanced Raman Scattering Sensors of Pollutants in Water Treatment
Abstract
:1. Introduction
2. SERS Sensors of Pollutants in Water Treatment
2.1. Detection of Pesticides, Herbicides, and Organic Dyes
2.2. Detection of Pharmaceuticals, Personal Care Products, and Heavy Ions
3. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- An, M.; Fan, L.; Huang, J.; Yang, W.; Wu, H.; Wang, X.; Khanal, R. The gap of water supply-Demand and its driving factors: From water footprint view in Huaihe River Basin. PLoS ONE 2021, 16, e0247904. [Google Scholar] [CrossRef]
- Priya, A.K.; Gnanasekaran, L.; Rajendran, S.; Qin, J.; Vasseghian, Y. Occurrences and removal of pharmaceutical and personal care products from aquatic systems using advanced treatment-A review. Environ. Res. 2022, 204, 112298. [Google Scholar] [CrossRef]
- Lee, K.; Jepson, W. Drivers and barriers to urban water reuse: A systematic review. Water Secur. 2020, 11, 100073. [Google Scholar] [CrossRef]
- Fito, J.; Van Hulle, S.W.H. Wastewater reclamation and reuse potentials in agriculture: Towards environmental sustainability. Environ. Dev. Sustain. 2021, 23, 2949–2972. [Google Scholar] [CrossRef]
- Voulvoulis, N. Water reuse from a circular economy perspective and potential risks from an unregulated approach. Curr. Opin. Environ. Sci. Health 2018, 2, 32–45. [Google Scholar] [CrossRef]
- Jodar-Abellan, A.; López-Ortiz, M.I.; Melgarejo-Moreno, J. Wastewater Treatment and Water Reuse in Spain. Current Situation and Perspectives. Water 2019, 11, 1551. [Google Scholar] [CrossRef]
- Rodriguez-Narvaez, O.M.; Peralta-Hernandez, J.M.; Goonetilleke, A.; Bandala, E.R. Treatment technologies for emerging contaminants in water: A review. Chem. Eng. J. 2017, 323, 361–380. [Google Scholar] [CrossRef]
- Dulio, V.; van Bavel, B.; Brorström-Lundén, E.; Harmsen, J.; Hollender, J.; Schlabach, M.; Slobodnik, J.; Thomas, K.; Koschorreck, J. Emerging pollutants in the EU: 10 years of NORMAN in support of environmental policies and regulations. Environ. Sci. Eur. 2018, 30, 5. [Google Scholar] [CrossRef]
- aus der Beek, T.; Weber, F.A.; Bergmann, A.; Hickmann, S.; Ebert, I.; Hein, A.; Küster, A. Pharmaceuticals in the environment-Global occurrences and perspectives. Environ. Toxicol. Chem. 2016, 35, 823–835. [Google Scholar] [CrossRef]
- Golovko, O.; Örn, S.; Sörengård, M.; Frieberg, K.; Nassazzi, W.; Lai, F.Y.; Ahrens, L. Occurrence and removal of chemicals of emerging concern in wastewater treatment plants and their impact on receiving water systems. Sci. Total Environ. 2021, 754, 142122. [Google Scholar] [CrossRef]
- Morin-Crini, N.; Lichtfouse, E.; Fourmentin, M.; Ribeiro, A.R.L.; Notsopoulos, C.; Mapelli, F.; Fenyvesi, É.; Vieira, M.G.A.; Picos-Corrales, L.A.; Moreno-Piraján, J.C.; et al. Removal of Emerging Contaminants from Wastewater Using Advanced Treatments. A Review. Environ. Chem. Lett. 2022, 20, 1333–1375. [Google Scholar] [CrossRef]
- Shah, A.I.; Din Dar, M.U.; Bhat, R.A.; Singh, J.P.; Singh, K.; Bhat, S.A. Prospectives and challenges of wastewater treatment technologies to combat contaminants of emerging concerns. Ecol. Eng. 2020, 152, 105882. [Google Scholar] [CrossRef]
- Rout, P.R.; Zhang, T.C.; Bhunia, P.; Surampalli, R.Y. Treatment technologies for emerging contaminants in wastewater treatment plants: A review. Sci. Total Environ. 2021, 753, 141990. [Google Scholar] [CrossRef]
- Zulkifli, S.N.; Rahim, H.A.; Lau, W.J. Detection of contaminants in water supply: A review on state-of-the-art monitoring technologies and their applications. Sens. Actuators B Chem. 2018, 255, 2657–2689. [Google Scholar] [CrossRef]
- Hernández, F.; Sancho, J.V.; Ibáñez, M.; Guerrero, C. Antibiotic Residue Determination in Environmental Waters by LC- MS. TrAC Trends Anal. Chem. 2007, 26, 466–485. [Google Scholar] [CrossRef]
- Lacey, C.; McMahon, G.; Bones, J.; Barron, L.; Morrissey, A.; Tobin, J.M. An LC–MS Method for the Determination of Pharmaceutical Compounds in Wastewater Treatment Plant Influent and Effluent Samples. Talanta 2008, 75, 1089–1097. [Google Scholar] [CrossRef] [PubMed]
- Paíga, P.; Correia, M.; Fernandes, M.J.; Silva, A.; Carvalho, M.; Vieira, J.; Jorge, S.; Silva, J.G.; Freire, C.; Delerue-Matos, C. Assessment of 83 pharmaceuticals in WWTP influent and effluent samples by UHPLC-MS/MS: Hourly variation. Sci. Total Environ. 2019, 648, 582–600. [Google Scholar] [CrossRef]
- Rasheed, T.; Bilal, M.; Nabeel, F.; Adeel, M.; Iqbal, H.M.N. Environmentally-related contaminants of high concern: Potential sources and analytical modalities for detection, quantification, and treatment. Environ. Int. 2019, 122, 52–66. [Google Scholar] [CrossRef]
- Chauhan, R.; Singh, J.; Sachdev, T.; Basu, T.; Malhotra, B.D. Recent Advances in Mycotoxins Detection. Biosens. Bioelectron. 2016, 81, 532–545. [Google Scholar] [CrossRef]
- Linley, S.; Leshuk, T.; Gu, F.X. Synthesis of Magnetic Rattle-Type Nanostructures for Use in Water Treatment. ACS Appl. Mater. Interfaces 2013, 5, 2540–2548. [Google Scholar] [CrossRef]
- Munteanu, F.-D.; Titoiu, A.; Marty, J.-L.; Vasilescu, A. Detection of Antibiotics and Evaluation of Antibacterial Activity with Screen-Printed Electrodes. Sensors 2018, 18, 901. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhao, J.; Liang, L. Recent Development of Antibiotic Detection in Food and Environment: The Combination of Sensors and Nanomaterials. Microchim. Acta 2021, 188, 21. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xue, Q.; Chang, C.; Wang, R.; Liu, Z.; He, L. Recent progress regarding electrochemical sensors for the detection of typical pollutants in water environments. Anal. Sci. 2022, 38, 55–70. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.H.; Jung, D.H.; Heo, J.H.; Lee, C.Y.; Jeong, S.Y.; Lee, J.H. Gold Nanoparticles as Exquisite Colorimetric Transducers for Water Pollutant Detection. ACS Appl. Mater. Interfaces 2023, 15, 19785–19806. [Google Scholar] [CrossRef]
- Han, C.; Chen, J.; Wu, X.; Huang, Y.; Zhao, Y. Detection of Metronidazole and Ronidazole from Environmental Samples by Surface Enhanced Raman Spectroscopy. Talanta 2014, 128, 293–298. [Google Scholar] [CrossRef]
- Fateixa, S.; Nogueira, H.I.S.; Trindade, T. Surface-Enhanced Raman Scattering Spectral Imaging for the Attomolar Range Detection of Crystal Violet in Contaminated Water. ACS Omega 2018, 3, 4331–4341. [Google Scholar] [CrossRef]
- Zhong, L.-B.; Liu, Q.; Wu, P.; Niu, Q.-F.; Zhang, H.; Zheng, Y.-M. Facile On-Site Aqueous Pollutant Monitoring Using a Flexible, Ultralight, and Robust Surface-Enhanced Raman Spectroscopy Substrate: Interface Self-Assembly of Au@Ag Nanocubes on a Polyvinyl Chloride Template. Environ. Sci. Technol. 2018, 52, 5812–5820. [Google Scholar] [CrossRef]
- Yue, X.; Su, Y.; Wang, X.; Li, L.; Ji, W.; Ozaki, Y. Reusable Silicon-Based SERS Chip for Ratiometric Analysis of Fluoride Ion in Aqueous Solutions. ACS Sens. 2019, 4, 2336–2342. [Google Scholar] [CrossRef]
- Liu, S.; Chen, Y.; Wang, Y.; Zhao, G. Group-Targeting Detection of Total Steroid Estrogen Using Surface-Enhanced Raman Spectroscopy. Anal. Chem. 2019, 91, 7639–7647. [Google Scholar] [CrossRef]
- Halvorson, R.A.; Vikesland, P.J. Surface-Enhanced Raman Spectroscopy (SERS) for Environmental Analyses. Environ. Sci. Technol. 2010, 44, 7749–7755. [Google Scholar] [CrossRef]
- Li, D.-W.; Zhai, W.-L.; Li, Y.-T.; Long, Y.-T. Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Microchim. Acta 2014, 181, 23–43. [Google Scholar] [CrossRef]
- Wei, H.; Hossein Abtahi, S.M.; Vikesland, P.J. Plasmonic colorimetric and SERS sensors for environmental analysis. Environ. Sci. Nano 2015, 2, 120–135. [Google Scholar] [CrossRef]
- Pinheiro, P.C.; Daniel-da-Silva, A.L.; Nogueira, H.I.S.; Trindade, T. Functionalized Inorganic Nanoparticles for Magnetic Separation and SERS Detection of Water Pollutants. Eur. J. Inorg. Chem. 2018, 2018, 3443–3461. [Google Scholar] [CrossRef]
- Guerrini, L.; Alvarez-Puebla, R.A. Surface-Enhanced Raman Scattering Sensing of Transition Metal Ions in Waters. ACS Omega 2021, 6, 1054–1063. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Liu, H.; Mao, M.; Meng, J.; Yang, L.; Liu, J. Surface-Enhanced Raman Spectroscopy on Liquid Interfacial Nanoparticle Arrays for Multiplex Detecting Drugs in Urine. Anal. Chem. 2016, 88, 8145–8151. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, D.; Cao, X.; Gu, H.; Deng, W. Self-Assembled Microgels Arrays for Electrostatic Concentration and Surface-Enhanced Raman Spectroscopy Detection of Charged Pesticides in Seawater. Anal. Chem. 2019, 91, 11192–11199. [Google Scholar] [CrossRef]
- Lal, S.; Grady, N.K.; Kundu, J.; Levin, C.S.; Lassiter, J.B.; Halas, N.J. Tailoring plasmonic substrates for surface enhanced spectroscopies. Chem. Soc. Rev. 2008, 37, 898–911. [Google Scholar] [CrossRef]
- Dubey, A.; Mishra, R.; Cheng, C.-W.; Kuang, Y.-P.; Gwo, S.; Yen, T.-J. Demonstration of a Superior Deep-UV Surface-Enhanced Resonance Raman Scattering (SERRS) Substrate and Single-Base Mutation Detection in Oligonucleotides. J. Am. Chem. Soc. 2021, 143, 19282–19286. [Google Scholar] [CrossRef]
- Sarychev, A.K.; Ivanov, A.; Lagarkov, A.N.; Ryzhikov, I.; Afanasev, K.; Bykov, I.; Barbillon, G.; Bakholdin, N.; Mikhailov, M.; Smyk, A.; et al. Plasmon Localization and Giant Fields in an Open-Resonator Metasurface for Surface-Enhanced-Raman-Scattering Sensors. Phys. Rev. Appl. 2022, 17, 044029. [Google Scholar] [CrossRef]
- Barbillon, G.; Humbert, C.; González, M.U.; García-Martín, J.M. Gold Nanocolumnar Templates for Effective Chemical Sensing by Surface-Enhanced Raman Scattering. Nanomaterials 2022, 12, 4157. [Google Scholar] [CrossRef]
- Jensen, L.; Aikens, C.M.; Schatz, G.C. Electronic structure methods for studying surface-enhanced Raman scattering. Chem. Soc. Rev. 2008, 37, 1061–1073. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.-Y.; You, E.-M.; Tian, Z.-Q.; Moskovits, M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2017, 46, 4042–4076. [Google Scholar] [CrossRef] [PubMed]
- Shvalya, V.; Filipic, G.; Zavasnik, J.; Abdulhalim, I.; Cvelbar, U. Surface-enhanced Raman spectroscopy for chemical and biological sensing using nanoplasmonics: The relevance of interparticle spacing and surface morphology. Appl. Phys. Rev. 2020, 7, 031307. [Google Scholar] [CrossRef]
- Halas, N.J.; Lal, S.; Chang, W.-S.; Link, S.; Nordlander, P. Plasmons in Strongly Coupled Metallic Nanostructures. Chem. Rev. 2011, 111, 3913–3961. [Google Scholar] [CrossRef]
- Kravets, V.G.; Kabashin, A.V.; Barnes, W.L.; Grigorenko, A.N. Plasmonic Surface Lattice Resonances: A Review of Properties and Applications. Chem. Rev. 2018, 118, 5912–5951. [Google Scholar] [CrossRef] [PubMed]
- McMahon, J.M.; Li, S.; Ausman, L.K.; Schatz, G.C. Modeling the Effect of Small Gaps in Surface-Enhanced Raman Spectroscopy. J. Phys. Chem. C 2012, 116, 1627–1637. [Google Scholar] [CrossRef]
- Barbillon, G.; Ivanov, A.; Sarychev, A.K. SERS Amplification in Au/Si Asymmetric Dimer Array Coupled to Efficient Adsorption of Thiophenol Molecules. Nanomaterials 2021, 11, 1521. [Google Scholar] [CrossRef]
- Barbillon, G. Latest Advances in Metasurfaces for SERS and SEIRA Sensors as Well as Photocatalysis. Int. J. Mol. Sci. 2022, 23, 10592. [Google Scholar] [CrossRef]
- Ding, S.-Y.; Yi, J.; Li, J.-F.; Ren, B.; Wu, D.-Y.; Pannerselvam, R.; Tian, Z.-Q. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 2016, 1, 16021. [Google Scholar] [CrossRef]
- Le Ru, E.C.; Blackie, E.; Meyer, M.; Etchegoin, P.G. Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. J. Phys. Chem. C 2007, 111, 13794–13803. [Google Scholar] [CrossRef]
- Morton, S.M.; Silverstein, D.W.; Jensen, L. Theoretical Studies of Plasmonics using Electronic Structure Methods. Chem. Rev. 2011, 111, 3962–3994. [Google Scholar] [CrossRef]
- Barbillon, G.; Noblet, T.; Humbert, C. Highly crystalline ZnO film decorated with gold nanospheres for PIERS chemical sensing. Phys. Chem. Chem. Phys. 2020, 22, 21000–21004. [Google Scholar] [CrossRef] [PubMed]
- Barbillon, G. Au Nanoparticles Coated ZnO Film for Chemical Sensing by PIERS Coupled to SERS. Photonics 2022, 9, 562. [Google Scholar] [CrossRef]
- Li, J.; Wang, Q.; Wang, J.; Li, M.; Zhang, X.; Luan, L.; Li, P.; Xu, W. Quantitative SERS sensor based on self-assembled Au@Ag heterogeneous nanocuboids monolayer with high enhancement factor for practical quantitative detection. Anal. Bioanal. Chem. 2021, 413, 4207–4215. [Google Scholar] [CrossRef]
- Yang, Y.; Li, J.; Luo, J.; Ding, Y.; Song, P. Effect of surface hydroxyls and porous nanostructured sensors integrated for SERS monitoring and efficient removal of organic pollutants. Appl. Surf. Sci. 2022, 601, 154123. [Google Scholar] [CrossRef]
- Yang, W.; Tang, J.; Ou, Q.; Yan, X.; Liu, L.; Liu, Y. Recyclable Ag-Deposited TiO2 SERS Substrate for Ultrasensitive Malachite Green Detection. ACS Omega 2021, 6, 27271–27278. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Wang, W.; Rahman, A.; Nam, W.; Zhou, W.; Vikesland, P.J. Highly porous gold supraparticles as surface- enhanced Raman spectroscopy (SERS) substrates for sensitive detection of environmental contaminants. RSC Adv. 2022, 12, 32803–32812. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Guan, H.; Lin, S.; Dong, H.; Hasi, W.; Dong, B. Plasmonic nanosensor based on Ag nanocubes of high purification by extraction filtration strategy for SERS determination of malachite green in aquaculture water. Sens. Actuators B Chem. 2022, 358, 131515. [Google Scholar] [CrossRef]
- Chen, S.; Bu, M.; You, X.; Dai, Z.; Shi, J. High-performance detection of p-nitroaniline on defect-graphene SERS substrate utilizing molecular imprinting technique. Microchem. J. 2021, 168, 106536. [Google Scholar] [CrossRef]
- Daripa, Y.; Verma, R.; Guin, D.; Chakraborty, C.; Awasthi, K.; Kuila, B.K. Metal-Immobilized Micellar Aggregates of a Block Copolymer from a Mixed Solvent for a SERS-Active Sensing Substrate and Versatile Dip Catalysis. Langmuir 2021, 37, 2445–2456. [Google Scholar] [CrossRef]
- Li, R.; Chen, M.; Yang, H.; Hao, N.; Liu, Q.; Peng, M.; Wang, L.; Hu, Y.; Chen, X. Simultaneous In Situ Extraction and Self-Assembly of Plasmonic Colloidal Gold Superparticles for SERS Detection of Organochlorine Pesticides in Water. Anal. Chem. 2021, 93, 4657–4665. [Google Scholar] [CrossRef]
- Shi, C.; Qin, L.; Wu, S.; Kang, S.-Z.; Li, X. Highly sensitive SERS detection and photocatalytic degradation of 4-aminothiophenol by a cost-effective cobalt metal–organic framework-based sandwich-like sheet. Chem. Eng. J. 2021, 422, 129970. [Google Scholar] [CrossRef]
- Chen, Q.; Qin, L.; Shi, C.; Kang, S.-Z.; Li, X. A stable and plug-and-play aluminium/titanium dioxide/metal-organic framework/silver composite sheet for sensitive Raman detection and photocatalytic removal of 4-aminothiophenol. Chemosphere 2021, 282, 131000. [Google Scholar] [CrossRef]
- Yao, L.; Dai, P.; Ouyang, L.; Zhu, L. A sensitive and reproducible SERS sensor based on natural lotus leaf for paraquat detection. Microchem. J. 2021, 160, 105728. [Google Scholar] [CrossRef]
- Zhu, C.; Zhao, Q.; Wang, X.; Li, Z.; Hu, X. Ag-nanocubes/graphene-oxide/Au-nanoparticles composite film with highly dense plasmonic hotspots for surface-enhanced Raman scattering detection of pesticide. Microchem. J. 2021, 165, 106090. [Google Scholar] [CrossRef]
- Han, M.; Zhang, J.; Wei, H.; Zou, W.; Zhang, M.; Meng, X.; Chen, W.; Shao, H.; Wang, C. Rapid and Robust Analysis of Coumatetralyl in Environmental Water and Human Urine Using a Portable Raman Spectrometer. ACS Omega 2023, 8, 12878–12885. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; O’Riordan, A.; Lovera, P. Highly sensitive pesticide detection using electrochemically prepared Silver-Gum Arabic nanocluster SERS substrates. Sens. Actuators B Chem. 2022, 364, 131851. [Google Scholar] [CrossRef]
- Wang, H.; Wei, H. Controlled Citrate Oxidation on Gold Nanoparticle Surfaces for Improved Surface-Enhanced Raman Spectroscopic Analysis of Low-Affinity Organic Micropollutants. Langmuir 2022, 38, 4958–4968. [Google Scholar] [CrossRef]
- Huang, Y.-H.; Wei, H.; Santiago, P.J.; Thrift, W.J.; Ragan, R.; Jiang, S. Sensing Antibiotics in Wastewater Using Surface-Enhanced Raman Scattering. Environ. Sci. Technol. 2023, 57, 4880–4891. [Google Scholar] [CrossRef]
- Li, S.; Lv, X.; Yang, Q.; Zhang, S.; Su, J.; Cheng, S.-B.; Lai, Y.; Chen, J.; Zhan, J. Dynamic SPME–SERS Induced by Electric Field: Toward In Situ Monitoring of Pharmaceuticals and Personal Care Products. Anal. Chem. 2022, 94, 9270–9277. [Google Scholar] [CrossRef]
- Berganza, L.B.; Litti, L.; Meneghetti, M.; Lanceras-Mendez, S.; Reguera, J. Enhancement of Magnetic Surface-Enhanced Raman Scattering Detection by Tailoring Fe3O4@Au Nanorod Shell Thickness and Its Application in the On-site Detection of Antibiotics in Water. ACS Omega 2022, 7, 45493–45503. [Google Scholar] [CrossRef] [PubMed]
- Jaitpal, S.; Chavva, S.R.; Mabbott, S. 3D Printed SERS-Active Thin-Film Substrates Used to Quantify Levels of the Genotoxic Isothiazolinone. ACS Omega 2022, 7, 2850–2860. [Google Scholar] [CrossRef] [PubMed]
- Benhabib, M.; Kleinman, S.L.; Peterman, M.C. Quantification of Amines in Refinery Process Water via Surface-Enhanced Raman Spectroscopy. Energy Fuels 2023, 37, 1881–1886. [Google Scholar] [CrossRef]
- Burtsev, V.; Erzina, M.; Guselnikova, O.; Miliutina, E.; Kalachyova, Y.; Svorcik, V.; Lyutakov, O. Detection of trace amounts of insoluble pharmaceuticals in water by extraction and SERS measurements in a microfluidic flow regime. Analyst 2021, 146, 3686–3696. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Hou, X.; Zhen, C.; Wang, A.X. Sub-Part-Per-Billion Level Sensing of Fentanyl Residues from Wastewater Using Portable Surface-Enhanced Raman Scattering Sensing. Biosensors 2021, 11, 370. [Google Scholar] [CrossRef]
- Lê, Q.T.; Ly, N.H.; Kim, M.-K.; Lim, S.H.; Son, S.J.; Zoh, K.-D.; Joo, S.-W. Nanostructured Raman substrates for the sensitive detection of submicrometer-sized plastic pollutants in water. J. Hazard Mater. 2021, 402, 123499. [Google Scholar] [CrossRef]
- Mao, K.; Yang, Z.; Zhang, H.; Li, X.; Cooper, J.M. Paper-based nanosensors to evaluate community-wide illicit drug use for wastewater-based epidemiology. Water Res. 2021, 189, 116559. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, X.L.; Ma, R.; Deng, S.; Wang, X.; Wang, X.Q.; Zhang, X.; Huang, X.; Liu, Y.; Li, G.; et al. Ultra-fast and onsite interrogation of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in waters via surface enhanced Raman scattering (SERS). Water Res. 2021, 200, 117243. [Google Scholar] [CrossRef]
- Palermo, G.; Rippa, M.; Conti, Y.; Vestri, A.; Castagna, R.; Fusco, G.; Suffredini, E.; Zhou, J.; Zyss, J.; De Luca, A.; et al. Plasmonic Metasurfaces Based on Pyramidal Nanoholes for High-Efficiency SERS Biosensing. ACS Appl. Mater. Interfaces 2021, 13, 43715–43725. [Google Scholar] [CrossRef]
- Zorlu, T.; Puertas, B.; Becerril-Castro, I.B.; Guerrini, L.; Giannini, V.; Correa-Duarte, M.A.; Alvaez-Puebla, R.A. Optical Quantification of Metal Ions Using Plasmonic Nanostructured Microbeads Coated with Metal–Organic Frameworks and Ion-Selective Dyes. ACS Nanosci. Au 2023, 3, 222–229. [Google Scholar] [CrossRef]
- He, Q.; Han, Y.; Huang, Y.; Gao, J.; Gao, Y.; Han, L.; Zhang, Y. Reusable dual-enhancement SERS sensor based on graphene and hybrid nanostructures for ultrasensitive lead (II) detection. Sens. Actuators B Chem. 2021, 341, 130031. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, Q.; Gao, C.; Ma, L.; Song, P.; Xia, L. A label-free SERS sensor for the detection of Hg2+ based on phenylacetylene functionalized Ag nanoparticles. Microchem. J. 2021, 168, 106504. [Google Scholar] [CrossRef]
- Kim, W.; Lee, W.; Park, H.; Park, J.; Kim, W.; Kang, B.; Choi, E.; Kim, C.-S.; Park, J.-O.; Lee, G.; et al. Biomimetic Nano-Pine-Pollen Structure-Based Surface-Enhanced Raman Spectroscopy Sensing Platform for the Hypersensitive Detection of Toxicants: Cadmium and Amyloid. ACS Sustain. Chem. Eng. 2022, 10, 3180–3190. [Google Scholar] [CrossRef]
- Logan, N.; Lou-Franco, J.; Elliott, C.; Cao, C. Catalytic gold nanostars for SERS-based detection of mercury ions (Hg2+) with inverse sensitivity. Enivron. Sci. Nano 2021, 8, 2718–2730. [Google Scholar] [CrossRef]
- Yang, B.; Jin, S.; Guo, S.; Park, Y.; Chen, L.; Zhao, B.; Jung, Y.M. Recent Development of SERS Technology: Semiconductor-Based Study. ACS Omega 2019, 4, 20101–20108. [Google Scholar] [CrossRef]
- Yilmaz, M.; Babur, E.; Ozdemir, M.; Gieseking, R.L.; Dede, Y.; Tamer, U.; Schatz, G.C.; Facchetti, A.; Usta, H.; Demirel, G. Nanostructured organic semiconductor films for molecular detection with surface-enhanced Raman spectroscopy. Nat. Mater. 2017, 16, 918–924. [Google Scholar] [CrossRef]
- Yuan, K.; Mei, Q.; Guo, X.; Xu, Y.; Yang, D.; Sánchez, B.J.; Sheng, B.; Liu, C.; Hu, Z.; Yu, G.; et al. Antimicrobial peptide based magnetic recognition elements and Au@Ag-GO SERS tags with stable internal standards: A three in one biosensor for isolation, discrimination and killing of multiple bacteria in whole blood. Chem. Sci. 2018, 9, 8781–8795. [Google Scholar] [CrossRef]
- Guo, J.; Zhong, Z.; Li, Y.; Liu, Y.; Wang, R.; Ju, H. “Three-in-One” SERS Adhesive Tape for Rapid Sampling, Release, and Detection of Wound Infectious Pathogens. ACS Appl. Mater. Interfaces 2019, 11, 36399–36408. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, H.; Chen, Y.; Du, Y.; Gu, C.; Zhao, Z.; Si, H.; Wei, G.; Jiang, T.; Zhou, J. Quantitative and Recyclable Surface-Enhanced Raman Spectroscopy Immunoassay Based on Fe3O4@TiO2@Ag Core–Shell Nanoparticles and Au Nanowire/Polydimethylsiloxane Substrates. ACS Appl. Nano Mater. 2020, 3, 4610–4622. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, H.; Chen, Y.; Gu, C.; Wei, G.; Jiang, T. Quantitative SERS-Based Detection and Elimination of Mixed Hazardous Additives in Food Mediated by the Intrinsic Raman Signal of TiO2 and Magnetic Enrichment. ACS Sustain. Chem. Eng. 2020, 8, 16990–16999. [Google Scholar] [CrossRef]
SERS Substrates | Sample | Pollutants | LOD | Refs. |
---|---|---|---|---|
Au@Ag NCs | Fishpond water | MG | M | [54] |
AlOOH@Ag | River, industrial wastewater | Congo Red | M | [55] |
TiO/Ag FLNM | Lake waters | MG | M | [56] |
PAuSPs | Wastewater influent | MGITC | M | [57] |
AgNCs | Aquaculture water | MG | M | [58] |
DG/Ag-MIP | River water | PNA | M | [59] |
AgNP-PS-b-PAA | Water | Rhodamine B | M | [60] |
AuSPs | River, fishpond water | OCP | M | [61] |
Ag/ZIF-67/TiO/Cu | River water | 4-ATP | M | [62] |
Al-TiO-ZIF-8-Ag | River water | 4-ATP | M | [63] |
AgNPs | Tap and drinking water | Paraquat | 1.2 g/L | [64] |
AgNCs/GO/AuNPs | Drinking water | Thiram | 0.37 g/L | [65] |
AuNPs | Environmental water | CMTT | 1.53 g/L | [66] |
Ag-GA | Mineral or river water | 2,4-D | M | [67] |
AuNPs | Water | 4-CBA | M | [68] |
SERS Substrates | Sample | Pollutants | LOD | Refs. |
---|---|---|---|---|
Self-assembled AuNPs | Wastewater | Quinoline | 5 g/L | [69] |
r-Ag/Au fiber | Household wastewater | Benzidine | 5 g/L | [70] |
FeONR@AuNPs | Water | CIP | M | [71] |
Ag–Cu–PLA disks | Lake water | CMIT | 10 mg/L | [72] |
Au nanoparticles | Refinery process water | MEA | 1.8 mg/L | [73] |
AuMNPs | Water | Ibuprofen | M | [74] |
AgNPs on DE film | Wastewater | Fentanyl | 0.8 g/L | [75] |
AuNSs@Ag@AAO | Tap, river and sea water | PMPP | 50 mg/L | [76] |
Au@AgNPs on GNFP | Wastewater | MA | 7.2 ng/L | [77] |
ACE2@AgNRs array | Various waters | SARS-CoV-2 | – | [78] |
Au pyramidal nanoholes | Water | HAV | 13 ng/L | [79] |
PS@Ag@ZIF-8 | Tap water | Cu | M | [80] |
Gr/Au/Ag/GaN | Water | Pb | M | [81] |
Ph-AgNPs | Lake water | Hg | M | [82] |
NPP-NS | Drinking water | Cd | M | [83] |
AuNSs-PEG | Seawater | Hg | 0.2 g/L | [84] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbillon, G.; Cheap-Charpentier, H. Advances in Surface-Enhanced Raman Scattering Sensors of Pollutants in Water Treatment. Nanomaterials 2023, 13, 2417. https://doi.org/10.3390/nano13172417
Barbillon G, Cheap-Charpentier H. Advances in Surface-Enhanced Raman Scattering Sensors of Pollutants in Water Treatment. Nanomaterials. 2023; 13(17):2417. https://doi.org/10.3390/nano13172417
Chicago/Turabian StyleBarbillon, Grégory, and Hélène Cheap-Charpentier. 2023. "Advances in Surface-Enhanced Raman Scattering Sensors of Pollutants in Water Treatment" Nanomaterials 13, no. 17: 2417. https://doi.org/10.3390/nano13172417
APA StyleBarbillon, G., & Cheap-Charpentier, H. (2023). Advances in Surface-Enhanced Raman Scattering Sensors of Pollutants in Water Treatment. Nanomaterials, 13(17), 2417. https://doi.org/10.3390/nano13172417