Emission Enhancement of Ge/Si Quantum Dots in Hybrid Structures with Subwavelength Lattice of Al Nanodisks
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poempool, T.; Aberl, J.; Clementi, M.; Spindlberger, L.; Vukušić, L.; Galli, M.; Gerace, D.; Fournel, F.; Hartmann, J.-M.; Schäffler, F.; et al. Single SiGe Quantum Dot Emission Deterministically Enhanced in a High-Q Photonic Crystal Resonator. Opt. Express 2023, 31, 15564. [Google Scholar] [CrossRef]
- Kalinic, B.; Cesca, T.; Balasa, I.G.; Trevisani, M.; Jacassi, A.; Maier, S.A.; Sapienza, R.; Mattei, G. Quasi-BIC Modes in All-Dielectric Slotted Nanoantennas for Enhanced Er3+ Emission. ACS Photonics 2023, 10, 534–543. [Google Scholar] [CrossRef]
- Schatzl, M.; Hackl, F.; Glaser, M.; Rauter, P.; Brehm, M.; Spindlberger, L.; Simbula, A.; Galli, M.; Fromherz, T.; Schaffler, F. Enhanced telecom emission from single group iv quantum dots by precise CMOS-compatible positioning in photonic crystal cavities. ACS Photonics 2017, 4, 665–673. [Google Scholar] [CrossRef]
- Stepikhova, M.V.; Novikov, A.V.; Yablonskiy, A.N.; Shaleev, M.V.; Utkin, D.E.; Rutckaia, V.V.; Skorokhodov, E.V.; Sergeev, S.M.; Yurasov, D.V.; Krasilnik, Z.F. Light emission from Ge(Si)/SOI self-assembled nanoislands embedded in photonic crystal slabs of various periods with and without cavities. Semicond. Sci. Technol. 2019, 34, 024003–024009. [Google Scholar] [CrossRef]
- Jannesari, R.; Schatzl, M.; Hackl, F.; Glaser, M.; Hinger, K.; Fromherz, T.; Schaffler, F. Commensurate germanium light emitters in silicon-on-insulator photonic crystal slabs. Opt. Express 2014, 22, 25426–25435. [Google Scholar] [CrossRef]
- Dyakov, S.A.; Stepikhova, M.V.; Bogdanov, A.A.; Novikov, A.V.; Yurasov, D.V.; Shaleev, M.V.; Krasilnik, Z.F.; Tikhodeev, S.G.; Gippius, N.A. Photonic bound states in the continuum in Si structures with the self-assembled Ge nanoislands. Laser Photonics Rev. 2021, 15, 2000242. [Google Scholar] [CrossRef]
- Klimov, V. Nanoplasmonics; Jenny Stanford Publishing: New York, NY, USA, 2014. [Google Scholar]
- Dyakov, S.A.; Zhigunov, D.M.; Marinins, A.; Shalygina, O.A.; Vabishchevich, P.P.; Shcherbakov, M.R.; Presnov, D.E.; Fedyanin, A.A.; Kashkarov, P.K.; Popov, S.; et al. Plasmon induced modification of silicon nanocrystals photoluminescence in presence of gold nanostripes. Sci. Rep. 2018, 8, 4911. [Google Scholar] [CrossRef]
- Zinovyev, V.A.; Zinovieva, A.F.; Nenashev, A.V.; Dvurechenskii, A.V.; Katsuba, A.V.; Borodavchenko, O.M.; Zhivulko, V.D.; Mudryi, A.V. Self-assembled epitaxial metal-semiconductor nanostructures with enhanced GeSi quantum dot luminescence. J. Appl. Phys. 2020, 127, 243108. [Google Scholar] [CrossRef]
- Mertens, H.; Biteen, J.S.; Atwater, H.A.; Polman, A. Polarization-Selective Plasmon-Enhanced Silicon Quantum-Dot Luminescence. Nano Lett. 2006, 6, 2622. [Google Scholar] [CrossRef]
- Azzam, S.I.; Kildishev, A.V. Photonic Bound States in the Continuum: From Basics to Applications. Adv. Optical Mater. 2021, 9, 2001469. [Google Scholar] [CrossRef]
- Lee, J.; Zhen, B.; Chua, S.-L.; Qiu, W.; Joannopoulos, J.D.; Soljačić, M.; Shapira, O. Observation and Differentiation of Unique High-Q Optical Resonances Near Zero Wave Vector in Macroscopic Photonic Crystal Slabs. Phys. Rev. Lett. 2012, 109, 067401. [Google Scholar] [CrossRef]
- Moiseyev, N. Suppression of Feshbach Resonance Widths in Two-Dimensional Waveguides and Quantum Dots: A Lower Bound for the Number of Bound States in the Continuum. Phys. Rev. Lett. 2009, 102, 167404. [Google Scholar] [CrossRef]
- Plotnik, Y.; Peleg, O.; Dreisow, F.; Heinrich, M.; Nolte, S.; Szameit, A.; Segev, M. Experimental Observation of Optical Bound States in the Continuum. Phys. Rev. Lett. 2011, 107, 183901. [Google Scholar] [CrossRef]
- Hsu, C.W.; Zhen, B.; Lee, J.; Chua, S.-L.; Johnson, S.G.; Joannopoulos, J.D.; Soljačić, M. Observation of trapped light within the radiation continuum. Nature 2013, 499, 188. [Google Scholar] [CrossRef]
- Yang, Y.; Peng, C.; Liang, Y.; Li, Z.; Noda, S. Analytical Perspective for Bound States in the Continuum in Photonic Crystal Slabs. Phys. Rev. Lett. 2014, 113, 037401. [Google Scholar] [CrossRef]
- Azzam, S.I.; Shalaev, V.M.; Boltasseva, A.; Kildishev, A.V. Formation of Bound States in the Continuum in Hybrid Plasmonic-Photonic Systems. Phys. Rev. Lett. 2018, 121, 253901. [Google Scholar] [CrossRef]
- Friedrich, H.; Wintgen, D. Interfering resonances and bound states in the continuum. Phys. Rev. A 1985, 32, 3231. [Google Scholar] [CrossRef]
- Christ, A.; Tikhodeev, S.G.; Gippius, N.A.; Kuhl, J.; Giessen, H. Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab. Phys. Rev. Lett. 2003, 91, 183901. [Google Scholar] [CrossRef]
- Joseph, S.; Pandey, S.; Sarkar, S.; Joseph, J. Bound states in the continuum in resonant nanostructures: An overview of engineered materials for tailored applications. Nanophotonics 2021, 10, 4175–4207. [Google Scholar] [CrossRef]
- Zentgraf, T.; Christ, A.; Kuhl, J.; Gippius, N.A.; Tikhodeev, S.G.; Nau, D.; Giessen, H. Metallodielectric photonic crystal superlattices: Influence of periodic defects on transmission properties. Phys. Rev. B 2006, 73, 115103. [Google Scholar] [CrossRef]
- Liang, Y.; Koshelev, K.; Zhang, F.; Lin, H.; Lin, S.; Wu, J.; Jia, B.; Kivshar, Y. Bound States in the Continuum in Anisotropic Plasmonic Metasurfaces. Nano Lett. 2020, 20, 6351–6356. [Google Scholar] [CrossRef]
- Sun, S.; Ding, Y.; Li, H.; Hu, P.; Cheng, C.-W.; Sang, Y.; Cao, F.; Hu, Y.; Alù, A.; Liu, D.; et al. Tunable plasmonic bound states in the continuum in the visible range. Phys. Rev. B 2021, 103, 045416. [Google Scholar] [CrossRef]
- Smajic, J.; Hafner, C.; Raguin, L.; Tavzarashvili, K.; Mishrikey, M. Comparison of numerical methods for the analysis of plasmonic structures. J. Comput. Theor. Nanosci. 2009, 6, 763–774. [Google Scholar] [CrossRef]
- Galli, M.; Gerace, D.; Politi, A.; Liscidini, M.; Patrini, M.; Andreani, L.C.; Canino, A.; Miritello, M.; Lo Savio, R.; Irrera, A.; et al. Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides. Appl. Phys. Lett. 2006, 89, 241114. [Google Scholar] [CrossRef]
- Spindlberger, L.; Kim, M.; Aberl, J.; Fromherz, T.; Schäffler, F.; Fournel, F.; Hartmann, J.-M.; Hallam, B.; Brehm, M. Advanced hydrogenation process applied on Ge on Si quantum dots for enhanced light emission. Appl. Phys. Lett. 2021, 118, 083104. [Google Scholar] [CrossRef]
- Creatore, C.; Andreani, L.C. Quantum theory of spontaneous emission in multilayer dielectric structures. Phys. Rev. A 2008, 78, 063825. [Google Scholar] [CrossRef]
- Chu, Y.; Schonbrun, E.; Yang, T.; Crozier, K.B. Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays. Appl. Phys. Lett. 2008, 93, 181108. [Google Scholar] [CrossRef]
- Liu, Z.S.; Tibuleac, S.; Shin, D.; Young, P.P.; Magnusson, R. High-efficiency guided-mode resonance filter. Opt. Lett. 1998, 23, 19. [Google Scholar] [CrossRef]
- Rosenblatt, D.; Sharon, A.; Friesem, A.A. Resonant Grating Waveguide Structures. IEEE J. Quantum Electron. 1997, 33, 2038. [Google Scholar] [CrossRef]
- Hsu, C.W.; Zhen, B.; Stone, A.D.; Joannopoulos, J.D.; Soljacic, M. Bound states in the continuum. Nat. Rev. Mater. 2016, 1, 16048. [Google Scholar] [CrossRef]
- Marinica, D.C.; Borisov, A.G. Bound States in the Continuum in Photonics. Phys. Rev. Lett. 2008, 100, 183902. [Google Scholar] [CrossRef] [PubMed]
- Rybin, M.V.; Limonov, M.F. Resonance effects in photonic crystals and metamaterials. Phys. Uspekhi 2019, 62, 823–838. [Google Scholar] [CrossRef]
- Amotchkina, T.; Trubetskov, M.; Hahner, D.V.; Pervak, V. Characterization of e-beam evaporated Ge, YbF3, ZnS, and LaF3 thin films for laser-oriented coatings. Appl. Opt. 2020, 59, 40–47. [Google Scholar] [CrossRef]
- Nguyen, H.S.; Dubois, F.; Deschamps, T.; Cueff, S.; Pardon, A.; Leclercq, J.-L.; Seassal, C.; Letartre, X.; Viktorovitch, P. Symmetry Breaking in Photonic Crystals: On-Demand Dispersion from Flatband to Dirac Cones. Phys. Rev. Lett. 2018, 120, 066102. [Google Scholar] [CrossRef] [PubMed]
- Sadrieva, Z.F.; Sinev, I.S.; Koshelev, K.L.; Samusev, A.; Iorsh, I.V.; Takayama, O.; Malureanu, R.; Bogdanov, A.A.; Lavrinenko, A.V. Transition from Optical Bound States in the Continuum to Leaky Resonances: Role of Substrate and Roughness. ACS Photonics 2017, 4, 723. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zinovyev, V.A.; Smagina, Z.V.; Zinovieva, A.F.; Bloshkin, A.A.; Dvurechenskii, A.V.; Rodyakina, E.E.; Stepikhova, M.V.; Peretokin, A.V.; Novikov, A.V. Emission Enhancement of Ge/Si Quantum Dots in Hybrid Structures with Subwavelength Lattice of Al Nanodisks. Nanomaterials 2023, 13, 2422. https://doi.org/10.3390/nano13172422
Zinovyev VA, Smagina ZV, Zinovieva AF, Bloshkin AA, Dvurechenskii AV, Rodyakina EE, Stepikhova MV, Peretokin AV, Novikov AV. Emission Enhancement of Ge/Si Quantum Dots in Hybrid Structures with Subwavelength Lattice of Al Nanodisks. Nanomaterials. 2023; 13(17):2422. https://doi.org/10.3390/nano13172422
Chicago/Turabian StyleZinovyev, Vladimir A., Zhanna V. Smagina, Aigul F. Zinovieva, Aleksei A. Bloshkin, Anatoly V. Dvurechenskii, Ekaterina E. Rodyakina, Margarita V. Stepikhova, Artem V. Peretokin, and Alexey V. Novikov. 2023. "Emission Enhancement of Ge/Si Quantum Dots in Hybrid Structures with Subwavelength Lattice of Al Nanodisks" Nanomaterials 13, no. 17: 2422. https://doi.org/10.3390/nano13172422
APA StyleZinovyev, V. A., Smagina, Z. V., Zinovieva, A. F., Bloshkin, A. A., Dvurechenskii, A. V., Rodyakina, E. E., Stepikhova, M. V., Peretokin, A. V., & Novikov, A. V. (2023). Emission Enhancement of Ge/Si Quantum Dots in Hybrid Structures with Subwavelength Lattice of Al Nanodisks. Nanomaterials, 13(17), 2422. https://doi.org/10.3390/nano13172422