Luminescence in Anion-Deficient Hafnia Nanotubes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Experimental Techniques
3. Results and Discussion
3.1. Electronic Microscopy
3.2. Structural Phase Analysis
3.3. Estimation of the Bandgap Width
3.4. Spectral Characteristics of Luminescence
3.5. Photoluminescence Decay
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Robertson, J. High Dielectric Constant Oxides. EPJ Appl. Phys. 2004, 28, 265–291. [Google Scholar] [CrossRef]
- Zrinski, I.; Mardare, C.C.; Jinga, L.I.; Kollender, J.P.; Socol, G.; Minenkov, A.; Hassel, A.W.; Mardare, A.I. Electrolyte-dependent Modification of Resistive Switching in Anodic Hafnia. Nanomaterials 2021, 11, 666. [Google Scholar] [CrossRef]
- Banerjee, W.; Kashir, A.; Kamba, S. Hafnium Oxide (HfO2)—A Multifunctional Oxide: A Review on the Prospect and Challenges of Hafnium Oxide in Resistive Switching and Ferroelectric Memories. Small 2022, 18, 2107575. [Google Scholar] [CrossRef]
- Vokhmintsev, A.; Petrenyov, I.; Kamalov, R.; Weinstein, I. Quantum Conductors Formation and Resistive Switching Memory Effects in Zirconia Nanotubes. Nanotechnology 2022, 33, 075208. [Google Scholar] [CrossRef]
- Hsain, H.A.; Lee, Y.; Materano, M.; Mittmann, T.; Payne, A.; Mikolajick, T.; Schroeder, U.; Parsons, G.N.; Jones, J.L. Many Routes to Ferroelectric HfO2: A Review of Current Deposition Methods. J. Vac. Sci. Technol. A 2022, 40, 010803. [Google Scholar] [CrossRef]
- Gritsenko, V.A.; Islamov, D.R.; Perevalov, T.V.; Aliev, V.S.; Yelisseyev, A.P.; Lomonova, E.E.; Pustovarov, V.A.; Chin, A. Oxygen Vacancy in Hafnia as a Blue Luminescence Center and a Trap of Charge Carriers. J. Phys. Chem. C 2016, 120, 19980–19986. [Google Scholar] [CrossRef]
- Shilov, A.O.; Savchenko, S.S.; Vokhmintsev, A.S.; Gritsenko, V.A.; Weinstein, I.A. Thermal Quenching of Self-Trapped Exciton Luminescence in Nanostructured Hafnia. J. Lumin. 2022, 247, 118908. [Google Scholar] [CrossRef]
- Ćirić, A.; Stojadinović, S.; Dramićanin, M.D. Judd-Ofelt and Chromaticity Analysis of Hafnia Doped with Trivalent Europium as a Potential White LED Phosphor. Opt. Mater. 2019, 88, 392–395. [Google Scholar] [CrossRef]
- Vokhmintsev, A.S.; Petrenyov, I.A.; Kamalov, R.V.; Karabanalov, M.S.; Weinstein, I.A. Thermally Stimulated Luminescence of Oxygen-Deficient Zirconia Nanotubes. J. Lumin. 2022, 252, 119412. [Google Scholar] [CrossRef]
- Gritsenko, V.A.; Perevalov, T.V.; Islamov, D.R. Electronic Properties of Hafnium Oxide: A Contribution from Defects and Traps. Phys. Rep. 2016, 613, 1–20. [Google Scholar] [CrossRef]
- Fukushima, H.; Nakauchi, D.; Kato, T.; Kawaguchi, N.; Yanagida, T. Investigation of Scintillation Properties of Hf-Based Oxide Materials. Jpn. J. Appl. Phys. 2022, 62, 010506. [Google Scholar] [CrossRef]
- Gu, D.; Baumgart, H.; Namkoong, G.; Abdel-Fattah, T.M. Atomic Layer Deposition of ZrO2 and HfO2 Nanotubes by Template Replication. Electrochem. Solid-State Lett. 2009, 12, K25. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Su, Y.; Ma, Z.; Xie, Y.; Zhao, H.; Chen, C.; Zhang, Z.; Xie, E. Synthesis and White Light Emission of Rare Earth-Doped HfO2 Nanotubes. J. Am. Ceram. Soc. 2011, 94, 2141–2145. [Google Scholar] [CrossRef]
- Liu, L.X.; Ma, Z.W.; Xie, Y.Z.; Su, Y.R.; Zhao, H.T.; Zhou, M.; Zhou, J.Y.; Li, J.; Xie, E.Q. Photoluminescence of Rare Earth3+ Doped Uniaxially Aligned HfO2 Nanotubes Prepared by Sputtering with Electrospun Polyvinylpyrolidone Nanofibers as Templates. J. Appl. Phys. 2010, 107, 024309. [Google Scholar] [CrossRef]
- Tsuchiya, H.; Schmuki, P. Self-Organized High Aspect Ratio Porous Hafnium Oxide Prepared by Electrochemical Anodization. Electrochem. Commun. 2005, 7, 49–52. [Google Scholar] [CrossRef]
- Apolinário, A.; Sousa, C.T.; Oliveira, G.N.P.; Lopes, A.M.L.; Ventura, J.; Andrade, L.; Mendes, A.; Araújo, J.P. Tailoring the Anodic Hafnium Oxide Morphology Using Different Organic Solvent Electrolytes. Nanomaterials 2020, 10, 382. [Google Scholar] [CrossRef]
- Shandalov, M.; McIntyre, P.C. Size-Dependent Polymorphism in HfO2 Nanotubes and Nanoscale Thin Films. J. Appl. Phys. 2009, 106, 084322. [Google Scholar] [CrossRef]
- Evarestov, R.A.; Bandura, A.V.; Porsev, V.V.; Kovalenko, A.V. First-Principles Modeling of Hafnia-Based Nanotubes. J. Comput. Chem. 2017, 38, 2088–2099. [Google Scholar] [CrossRef]
- Shilov, A.O.; Savchenko, S.S.; Vokhmintsev, A.S.; Gritsenko, V.A.; Weinstein, I.A. Optical Parameters and Energy Gap Estimation in Hafnia Thin Film. AIP Conf. Proc. 2020, 2313, 030006. [Google Scholar] [CrossRef]
- Rempel, A.A.; Valeeva, A.A.; Vokhmintsev, A.S.; Weinstein, I.A. Titanium Dioxide Nanotubes: Synthesis, Structure, Properties and Applications. Russ. Chem. Rev. 2021, 90, 1397–1414. [Google Scholar] [CrossRef]
- Perevalov, T.V.; Gutakovskii, A.K.; Kruchinin, V.N.; Gritsenko, V.A.; Prosvirin, I.P. Atomic and Electronic Structure of Ferroelectric La-Doped HfO2 Films. Mater. Res. Express 2019, 6, 036403. [Google Scholar] [CrossRef]
- Wang, L.G.; Tu, H.L.; Xiong, Y.H.; Xiao, W.; Du, J.; Wang, J.W.; Huang, G.J. Formation of the Dopant-Oxygen Vacancy Complexes and Its Influence on the Photoluminescence Emissions in Gd-Doped HfO2. J. Appl. Phys. 2014, 116, 123505. [Google Scholar] [CrossRef]
- Guzmán-Olguín, J.C.; Montes, E.; Guzmán-Mendoza, J.; Báez-Rodríguez, A.; Zamora-Peredo, L.; García-Hipólito, M.; Alvarez-Fregoso, O.; Martínez-Merlín, I.; Falcony, C. Tunable White Light Emission from Hafnium Oxide Films Co-Doped with Trivalent Terbium and Europium Ions Deposited by Pyrosol Technique. Phys. Status Solidi Appl. Mater. Sci. 2017, 214, 1700269. [Google Scholar] [CrossRef]
- Kaszewski, J.; Olszewski, J.; Rosowska, J.; Witkowski, B.; Wachnicki, Ł.; Wenelska, K.; Mijowska, E.; Gajewski, Z.; Godlewski, M.; Godlewski, M.M. HfO2:Eu Nanoparticles Excited by X-rays and UV-Visible Radiation Used in Biological Imaging. J. Rare Earths 2019, 37, 1176–1182. [Google Scholar] [CrossRef]
- Shilov, A.O.; Vokhmintsev, A.S.; Henaish, A.M.A.; Weinstein, I.A. Formation of the Intrinsic Absorption Edge in Nanostructured Hafnium Dioxide Powder. Bull. Russ. Acad. Sci. Phys. 2022, 86, 771–774. [Google Scholar] [CrossRef]
- Peng, X.; Fu, J.; Zhang, X.; Li, Y.; Huang, M.; Huo, K.; Chu, P.K. Carbon-Doped TiO2 Nanotube Array Platform for Visible Photocatalysis. Nanosci. Nanotechnol. Lett. 2013, 5, 1251–1257. [Google Scholar] [CrossRef]
- Pelant, I.; Valenta, J. Luminescence Spectroscopy of Semiconductors; Oxford University Press: Oxford, UK, 2012. [Google Scholar] [CrossRef]
- Neumayer, D.A.; Cartier, E. Materials Characterization of ZrO2-SiO2 and HfO2-SiO2 Binary Oxides Deposited by Chemical Solution Deposition. J. Appl. Phys. 2001, 90, 1801–1808. [Google Scholar] [CrossRef]
- Balog, M.; Schieber, M.; Michman, M.; Patai, S. Chemical Vapor Deposition and Characterization of HfO2 Films from Organo-Hafnium Compounds. Thin Solid Films 1977, 41, 247–259. [Google Scholar] [CrossRef]
- Aygun, G.; Yildiz, I. Interfacial and Structural Properties of Sputtered HfO2 Layers. J. Appl. Phys. 2009, 106, 14312. [Google Scholar] [CrossRef]
- Ramadoss, A.; Krishnamoorthy, K.; Kim, S.J. Novel Synthesis of Hafnium Oxide Nanoparticles by Precipitation Method and Its Characterization. Mater. Res. Bull. 2012, 47, 2680–2684. [Google Scholar] [CrossRef]
- Sebti, Y.; Chauveau, T.; Chalal, M.; Lalatonne, Y.; Lefebvre, C.; Motte, L. Assessment of the Morphological, Optical, and Photoluminescence Properties of HfO2 Nanoparticles Synthesized by a Sol-Gel Method Assisted by Microwave Irradiation. Inorg. Chem. 2022, 61, 6508–6518. [Google Scholar] [CrossRef]
- Zhou, B.; Shi, H.; Zhang, X.D.; Su, Q.; Jiang, Z.Y. The Simulated Vibrational Spectra of HfO2 Polymorphs. J. Phys. D. Appl. Phys. 2014, 47, 115502. [Google Scholar] [CrossRef]
- Sekar, N. Optical, Photoluminescence and Thermoluminescence Characterization of Holmium Doped Hafnium Oxide Nanoparticles as Radiation Dosimeter. Opt. Mater. 2022, 134, 113073. [Google Scholar] [CrossRef]
- Klein, J.; Kampermann, L.; Mockenhaupt, B.; Behrens, M.; Strunk, J.; Bacher, G. Limitations of the Tauc Plot Method. Adv. Funct. Mater. 2023, 33, 2304523. [Google Scholar] [CrossRef]
- Gavartin, J.L.; Ramo, D.M.; Shluger, A.L.; Bersuker, G.; Lee, B.H. Negative Oxygen Vacancies in HfO2 as Charge Traps in High-k Stacks. Appl. Phys. Lett. 2006, 89, 082908. [Google Scholar] [CrossRef]
- Makuła, P.; Pacia, M.; Macyk, W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef]
- Jin, P.; He, G.; Xiao, D.; Gao, J.; Liu, M.; Lv, J.; Liu, Y.; Zhang, M.; Wang, P.; Sun, Z. Microstructure, Optical, Electrical Properties, and Leakage Current Transport Mechanism of Sol-Gel-Processed High-k HfO2 Gate Dielectrics. Ceram. Int. 2016, 42, 6761–6769. [Google Scholar] [CrossRef]
- Shilov, A.O.; Savchenko, S.S.; Vokhmintsev, A.S.; Chukin, A.V.; Karabanalov, M.S.; Vlasov, M.I.; Weinstein, I.A. Energy Gap Evaluation in Microcrystalline m-HfO2 Powder. J. Sib. Fed. Univ. Math. Phys. 2021, 14, 224–229. [Google Scholar] [CrossRef]
- Manikantan, J.; Ramalingam, H.B.; Shekar, B.C.; Murugan, B.; Kumar, R.R.; Santhoshi, J.S. Physical and Optical Properties of HfO2 NPs—Synthesis and Characterization in Finding Its Feasibility in Opto-Electronic Devices. Adv. Powder Technol. 2017, 28, 1636–1646. [Google Scholar] [CrossRef]
- Golosov, D.A.; Zavadski, S.M.; Melnikov, S.N.; Villa, N. Dielectric Characteristics of Hafnia Thin Films. Nanotechnologies Russ. 2017, 12, 529–533. [Google Scholar] [CrossRef]
- Aarik, J.; Mändar, H.; Kirm, M.; Pung, L. Optical Characterization of HfO2 Thin Films Grown by Atomic Layer Deposition. Thin Solid Films 2004, 466, 41–47. [Google Scholar] [CrossRef]
- Cheynet, M.C.; Pokrant, S.; Tichelaar, F.D.; Rouvìre, J.L. Crystal Structure and Band Gap Determination of HfO2 Thin Films. J. Appl. Phys. 2007, 101, 054101. [Google Scholar] [CrossRef]
- Lozanov, V.V.; Baklanova, N.I.; Shayapov, V.R.; Berezin, A.S. Crystal Growth and Photoluminescence Properties of Reactive CVD-Derived Monoclinic Hafnium Dioxide. Cryst. Growth Des. 2016, 16, 5283–5293. [Google Scholar] [CrossRef]
- Islamov, D.R.; Gritsenko, V.A.; Kruchinin, V.N.; Ivanova, E.V.; Zamoryanskaya, M.V.; Lebedev, M.S. The Evolution of the Conductivity and Cathodoluminescence of the Films of Hafnium Oxide in the Case of a Change in the Concentration of Oxygen Vacancies. Phys. Solid State 2018, 60, 2050–2057. [Google Scholar] [CrossRef]
- Aleksanyan, E.; Kirm, M.; Feldbach, E.; Harutyunyan, V. Identification of F+ Centers in Hafnia and Zirconia Nanopowders. Radiat. Meas. 2016, 90, 84–89. [Google Scholar] [CrossRef]
- Kiisk, V.; Lange, S.; Utt, K.; Tätte, T.; Mändar, H.; Sildos, I. Photoluminescence of Sol-Gel-Prepared Hafnia. Phys. B Condens. Matter 2010, 405, 758–762. [Google Scholar] [CrossRef]
- Villa, I.; Vedda, A.; Fasoli, M.; Lorenzi, R.; Kränzlin, N.; Rechberger, F.; Ilari, G.; Primc, D.; Hattendorf, B.; Heiligtag, F.J.; et al. Size-Dependent Luminescence in HfO2 Nanocrystals: Toward White Emission from Intrinsic Surface Defects. Chem. Mater. 2016, 28, 3245–3253. [Google Scholar] [CrossRef]
- Kumar, R.; Vij, A.; Singh, M. Defects Assisted Luminescence in m-HfO2 Nanocrystals: An Experimental and Theoretical Study. Optik 2021, 248, 168121. [Google Scholar] [CrossRef]
- Garcia-Guinea, J.; Correcher, V.; Can, N.; Garrido, F.; Townsend, P.D. Cathodoluminescence Spectra Recorded from Surfaces of Solids with Hydrous Molecules. J. Electron Spectros. Relat. Phenomena 2018, 227, 1–8. [Google Scholar] [CrossRef]
- Zhao, Y. Design of Higher-k and More Stable Rare Earth Oxides as Gate Dielectrics for Advanced CMOS Devices. Materials 2012, 5, 1413–1438. [Google Scholar] [CrossRef]
- Adirovitch, E.I. La Formule de Becquerel et La Loi Élémentaire Du Déclin de La Luminescence Des Phosphores Cristallins. J. Phys. Le Radium 1956, 17, 705–707. [Google Scholar] [CrossRef]
- Medlin, W.L. Decay of Phosphorescence in CaCO3, MgCO3, CaMg(CO3)2, and CaSO4. Phys. Rev. 1961, 122, 837–842. [Google Scholar] [CrossRef]
- Foster, A.S.; Lopez Gejo, F.; Shluger, A.L.; Nieminen, R.M. Vacancy and Interstitial Defects in Hafnia. Phys. Rev. B Condens. Matter Mater. Phys. 2002, 65, 1741171–17411713. [Google Scholar] [CrossRef]
- Muñoz Ramo, D.; Gavartin, J.L.; Shluger, A.L.; Bersuker, G. Spectroscopic Properties of Oxygen Vacancies in Monoclinic HfO2 Calculated with Periodic and Embedded Cluster Density Functional Theory. Phys. Rev. B Condens. Matter Mater. Phys. 2007, 75, 205336. [Google Scholar] [CrossRef]
Peak Energy, cm−1 | |||
---|---|---|---|
This Work | Independent Experiment | Calculation [33] | |
Annealed NTs | Monoclinic Nanopowder | ||
417 | — | 410 [28,29] 415 [31] | 410, Au |
428 | 432 | — | ? |
440 | 443 | — | ? |
523 | 523 | 506 [30] 515 [29] 516 [32] | 512, Bu |
543 | 546 | 550 [30] 555 [32] | ? |
602 | 592 | 595 [30] 600 [28] 615 [29] | 600, Au |
626 | — | 625 [29] 635 [28] | ? |
666 | 669 | 680 [32] | 665, Au |
759 | 759 | 740 [29] 750 [32] 752 [28] | 730, Bu |
Sample, Excitation Wavelength | Temperature, K | Emax, ±0.02 eV | FWHM, ±0.02 eV | I10/I280 | Reference |
---|---|---|---|---|---|
Photoluminescence | |||||
As-grown nanotubes, 263 nm | 10 | 2.30 | 0.82 | 1.75 | This work |
280 | 2.27 | 0.84 | |||
Annealed nanotubes, 263 nm | 10 | 2.38 | 0.74 | 4.78 | |
280 | 2.40 | 0.75 | |||
Monoclinic nanopowder, 263 nm | 10 | 2.33 | 0.54 | 2.07 | |
280 | 2.45 | 0.66 | |||
Monoclinic nanotubes, 325 nm | RT | 2.91 * | 0.98 * | — | [13] |
Monoclinic nanopowder, 210 nm | RT | 2.60 | 0.58 | — | [7] |
Monoclinic nanopowder, 200 nm | 10 | 2.96 * | 0.91 * | 1.05 * | [46] |
RT | 2.84 * | 0.76 * | |||
Cathodoluminescence | |||||
As-grown nanotubes | RT | 2.40 | 1.32 | — | This work |
Annealed nanotubes | 2.45 | 0.93 | |||
Monoclinic nanopowder | 3.00 | 1.04 | [46] | ||
Amorphous films | 2.75 | 0.87 | [45] |
Sample | Multiexponential Decay, See (1) | |||||
---|---|---|---|---|---|---|
A1 | A2 | A3 | τ1, ms | τ2, ms | τ3, ms | |
as-grown NTs | 0.744 | 0.382 | 0.176 | 0.191 | 1.56 | 11.5 |
annealed NTs | 2.595 | 0.726 | 0.048 | 0.056 | 0.29 | 2.12 |
nanopowder | 1.777 | 0.360 | 0.042 | 0.096 | 0.72 | 7.92 |
nanopowder [48]. | 0.284 | 0.406 | 0.306 | 0.198 | 2.04 | 11.5 |
Sample | Becquerel’s decay, see (2) | |||||
C, ms | r | |||||
as-grown NTs | 0.357 | 0.739 | ||||
annealed NTs | 0.181 | 1.591 | ||||
nanopowder | 0.111 | 0.950 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shilov, A.O.; Kamalov, R.V.; Karabanalov, M.S.; Chukin, A.V.; Vokhmintsev, A.S.; Mikhalevsky, G.B.; Zamyatin, D.A.; Henaish, A.M.A.; Weinstein, I.A. Luminescence in Anion-Deficient Hafnia Nanotubes. Nanomaterials 2023, 13, 3109. https://doi.org/10.3390/nano13243109
Shilov AO, Kamalov RV, Karabanalov MS, Chukin AV, Vokhmintsev AS, Mikhalevsky GB, Zamyatin DA, Henaish AMA, Weinstein IA. Luminescence in Anion-Deficient Hafnia Nanotubes. Nanomaterials. 2023; 13(24):3109. https://doi.org/10.3390/nano13243109
Chicago/Turabian StyleShilov, Artem O., Robert V. Kamalov, Maxim S. Karabanalov, Andrey V. Chukin, Alexander S. Vokhmintsev, Georgy B. Mikhalevsky, Dmitry A. Zamyatin, Ahmed M. A. Henaish, and Ilya A. Weinstein. 2023. "Luminescence in Anion-Deficient Hafnia Nanotubes" Nanomaterials 13, no. 24: 3109. https://doi.org/10.3390/nano13243109
APA StyleShilov, A. O., Kamalov, R. V., Karabanalov, M. S., Chukin, A. V., Vokhmintsev, A. S., Mikhalevsky, G. B., Zamyatin, D. A., Henaish, A. M. A., & Weinstein, I. A. (2023). Luminescence in Anion-Deficient Hafnia Nanotubes. Nanomaterials, 13(24), 3109. https://doi.org/10.3390/nano13243109