Pool Boiling Heat Transfer Characteristics of SiO2 and BN Nanoparticles Dispersed Mono and Hybrid Nanofluids
Abstract
:1. Introduction
2. Preparation of Nanofluids
3. Measurement of Thermal Conductivity
4. Experimental Setup and Measurements
5. Boiling Results and Discussion
6. Conclusions
- A good homogenization and stability of the prepared MNF and HNF samples;
- Reasonable enhancements in thermal conductivity for all NFs compared to the BF, increased by the increase in BN NPs’ percentage until reaching the maximum enhancement of about 7% for the BN MNF. The thermal conductivity enhancement of HNFs ranged between 3.2% (at 0.01/0.04 BN/SiO2) and 6.5% (at 0.04/0.01 BN/SiO2);
- The studied MNF and HNF samples showed significant enhancement in heat transfer performance compared to their BFs, and the performance decreased with the increase in SiO2 NPs in the HNF;
- Good enhancements in the CHF and BHF of both MNFs and HNFs were demonstrated. The CHF was enhanced by up to 80% for MNF and up to 69% for HNF at 0.04 vol.% of BN, while the lowest improvement was 48% for the SiO2 MNF, compared to the BF.
- The CHF of the HNFs was enhanced by about 69% for BN/SiO2 at 0.04/0.01 concentration and 51% for BN/SiO2 at 0.01/0.04 concentration;
- The BHF improved as the BN NPs’ concentration increased from 75% for SiO2 MNF up to 103% for MNF;
- The HTC improved with increasing BN NP concentration, by up to 52% for BN MNF.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
BF | Base fluid |
BHF | Burnout heat flux (W/m2) |
BN | Boron Nitride |
CHF | Critical heat flux (W/m2) |
DW | Distilled water |
d | Wire diameter (mm) |
EG | Ethylene Glycol |
HNF | Hybrid nanofluid |
PB | Pool boiling |
I | Current (amp) |
L | Wire length (m) |
MNF | Mono nanofluid |
NF | Nanofluid |
NP | Nanoparticles |
Heat flux (W/m2) | |
R | Electrical resistance (Ohm) |
Tw | Wire surface temperature (°C) |
Tsat | Saturation temperature of the fluid (°C) |
V | Voltage (V) |
References
- da Silva, R.P.P.; Mortean, M.V.V.; de Paiva, K.V.; Beckedorff, L.E.; Oliveira, J.L.G.; Brandão, F.G.; Monteiro, A.S.; Carvalho, C.S.; Oliveira, H.R.; Borges, D.G.; et al. Thermal and hydrodynamic analysis of a compact heat exchanger produced by additive manufacturing. Appl. Therm. Eng. 2021, 193, 116973. [Google Scholar] [CrossRef]
- Elmaaty, T.M.A.; Kabeel, A.E.; Mahgoub, M. Corrugated plate heat exchanger review. Renew. Sustain. Energy Rev. 2017, 70, 852–860. [Google Scholar] [CrossRef]
- Inbaoli, A.; Kumar, C.S.S.; Jayaraj, S. A review on techniques to alter the bubble dynamics in pool boiling. Appl. Therm. Eng. 2022, 214, 118805. [Google Scholar] [CrossRef]
- Mahmoud, M.M.; Karayiannis, T.G. Pool boiling review: Part I—Fundamentals of boiling and relation to surface design. Therm. Sci. Eng. Prog. 2021, 25, 101024. [Google Scholar] [CrossRef]
- Ajeeb, W.; Murshed, S.M.S. Nanofluids in Compact Heat exchangers for Thermal Applications: A State-of-the-Art Review. Therm. Sci. Eng. Prog. 2022, 30, 101276. [Google Scholar] [CrossRef]
- Ajeeb, W.; Murshed, S.M.S. Comparisons of numerical and experimental investigations of the thermal performance of Al2O3 and TiO2 nanofluids in a compact plate heat exchanger. Nanomaterials 2022, 12, 3634. [Google Scholar] [CrossRef]
- Kakaç, S.; Pramuanjaroenkij, A. Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transf. 2009, 52, 3187–3196. [Google Scholar] [CrossRef]
- Ajeeb, W.; Oliveira, M.S.A.; Martins, N.; Murshed, S.M.S. Performance evaluation of convective heat transfer and laminar flow of non-Newtonian MWCNTs in a circular tube. Therm. Sci. Eng. Prog. 2021, 25, 101029. [Google Scholar] [CrossRef]
- Kim, S.J. Pool Boiling Heat Transfer Characteristics of Nanofluids; Massachusetts Institute of Technology: Cambridge, MA, USA, 2007; Available online: http://dspace.mit.edu/handle/1721.1/41306 (accessed on 7 April 2023).
- Truong, B.H. Determination of Pool Boiling Critical Heat Flux Enhancement in Nanofluids; Massachusetts Institute of Technology: Cambridge, MA, USA, 2007. [Google Scholar] [CrossRef]
- Murshed, S.M.S.; Milanova, D.; Kumar, R. An experimental study of surface tension-dependent pool boiling characteristics of carbon nanotubes-nanofluids. In Proceedings of the ASME 2009 7th International Conference on Nanochannels, Microchannels and Minichannels, Pohang, Republic of Korea, 22–24 June 2009. [Google Scholar] [CrossRef]
- Salman, S.; Talib, A.R.A.; Saadon, S.; Sultan, M.T.H. Hybrid nanofluid flow and heat transfer over backward and forward steps: A review. Powder Technol. 2020, 363, 448–472. [Google Scholar] [CrossRef]
- Wang, L.; Ye, W.; He, X.; Wu, S.; Ming, P.; Wang, J.; Cheng, H.; Yan, B. Experimental study on the CHF enhancement effect of nanofluids on the oxidized low carbon steel surface. Appl. Therm. Eng. 2022, 204, 117968. [Google Scholar] [CrossRef]
- Yasmin, H.; Giwa, S.O.; Noor, S.; Aybar, H.S. Reproduction of nanofluid synthesis, thermal properties and experiments in engineering: A research paradigm shift. Energies 2023, 16, 1145. [Google Scholar] [CrossRef]
- Vallejo, J.P.; Prado, J.I.; Lugo, L. Hybrid or mono nanofluids for convective heat transfer applications. A critical review of experimental research. Appl. Therm. Eng. 2022, 203, 117926. [Google Scholar] [CrossRef]
- Kumar, A.; Chand, P.; Hassan, M.A. Louvered finned car radiator with MWCNT-SiO2 hybrid nanofluid: An experimental approach. Powder Technol. 2023, 415, 118176. [Google Scholar] [CrossRef]
- Ma, X.; Song, Y.; Wang, Y.; Yao, S.; Vafai, K. Amelioration of pool boiling thermal performance utilizing graphene-silver hybrid nanofluids. Powder Technol. 2022, 397, 117110. [Google Scholar] [CrossRef]
- Kamel, M.S.; Lezsovits, F.; Abdollahi, A.; Izadi, M. Amelioration of pool boiling thermal performance in case of using a new hybrid nanofluid. Case Stud. Therm. Eng. 2021, 24, 100872. [Google Scholar] [CrossRef]
- Ma, X.; Song, Y.; Wang, Y.; Zhang, Y.; Xu, J.; Yao, S.; Vafai, K. Experimental study of boiling heat transfer for a novel type of GNP-Fe3O4 hybrid nano fluids blended with different nanoparticles. Powder Technol. 2022, 396, 92–112. [Google Scholar] [CrossRef]
- Reddy, Y.A.; Venkatachalapathy, S. Heat transfer enhancement studies in pool boiling using hybrid nanofluids. Thermochim. Acta 2019, 672, 93–100. [Google Scholar] [CrossRef]
- Huang, M.; Borzoei, H.; Abdollahi, A.; Li, Z.; Karimipour, A. Effect of concentration and sedimentation on boiling heat transfer coefficient of GNPs-SiO2/deionized water hybrid Nanofluid: An experimental investigation. Int. Commun. Heat Mass Transf. 2021, 122, 105141. [Google Scholar] [CrossRef]
- Sharma, P.O.; Unune, D.R. Augmentation of pool boiling performance using Ag/ZnO hybrid nanofluid over EDM assisted robust heater surface modification. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 655, 130150. [Google Scholar] [CrossRef]
- Sharma, P.O.; Unune, D.R. Materials Today: Proceedings Optimising pool boiling performance of hybrid nanofluids through desirability function analysis. Mater. Today Proc. 2023, 72, 787–793. [Google Scholar] [CrossRef]
- Azmi, W.H.; Hamid, K.A.; Mamat, R.; Sharma, K.V.; Mohamad, M.S. Effects of working temperature on thermo-physical properties and forced convection heat transfer of TiO2 nanofluids in water-Ethylene glycol mixture. Appl. Therm. Eng. 2016, 106, 1190–1199. [Google Scholar] [CrossRef]
- Wen, T.; Lu, L.; Zhang, S.; Zhong, H. Experimental study and CFD modelling on the thermal and flow behavior of EG/water ZnO nanofluid in multiport mini channels. Appl. Therm. Eng. 2021, 182, 116089. [Google Scholar] [CrossRef]
- Ashrae. ASHRAE Handbook: Fundamentals; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2005. [Google Scholar]
- Ajeeb, W.; Murshed, S.M.S. Pool boiling heat transfer characteristics of new and recycled alumina nanofluids. Nanomaterials 2023, 13, 1040. [Google Scholar] [CrossRef]
- Milanova, D.; Kumar, R. Heat transfer behavior of silica nanoparticles in pool boiling experiment. J. Heat Transfer 2008, 130, 042401. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, Z.; Wang, R.; Zhu, Z. A review on heat transfer of nanofluids by applied electric field or magnetic field. Nanomaterials 2020, 10, 2386. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Chen, T.; Qi, J.; Du, J.; Pan, G.; Huang, L. Investigation on the heat transfer enhancement by nanofluid under electric field considering electrophorestic and thermophoretic effect. Case Stud. Therm. Eng. 2021, 28, 101498. [Google Scholar] [CrossRef]
- Modi, M.; Kangude, P.; Srivastava, A. Performance evaluation of alumina nanofluids and nanoparticles-deposited surface on nucleate pool boiling phenomena. Int. J. Heat Mass Transf. 2020, 146, 118833. [Google Scholar] [CrossRef]
- Kouloulias, K.; Sergis, A.; Hardalupas, Y.; Barrett, T.R. Visualisation of subcooled pool boiling in nanofluids. Fusion Eng. Des. 2019, 146, 153–156. [Google Scholar] [CrossRef]
- Pare, A.; Ghosh, S.K. The empirical characteristics on transient nature of Al2O3-water nanofluid pool boiling. Appl. Therm. Eng. 2021, 199, 117617. [Google Scholar] [CrossRef]
- Dadjoo, M.; Etesami, N.; Esfahany, M.N. Influence of orientation and roughness of heater surface on critical heat flux and pool boiling heat transfer coefficient of nanofluid. Appl. Therm. Eng. 2017, 124, 353–361. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ajeeb, W.; Murshed, S.M.S. Pool Boiling Heat Transfer Characteristics of SiO2 and BN Nanoparticles Dispersed Mono and Hybrid Nanofluids. Nanomaterials 2023, 13, 2625. https://doi.org/10.3390/nano13192625
Ajeeb W, Murshed SMS. Pool Boiling Heat Transfer Characteristics of SiO2 and BN Nanoparticles Dispersed Mono and Hybrid Nanofluids. Nanomaterials. 2023; 13(19):2625. https://doi.org/10.3390/nano13192625
Chicago/Turabian StyleAjeeb, Wagd, and S M Sohel Murshed. 2023. "Pool Boiling Heat Transfer Characteristics of SiO2 and BN Nanoparticles Dispersed Mono and Hybrid Nanofluids" Nanomaterials 13, no. 19: 2625. https://doi.org/10.3390/nano13192625
APA StyleAjeeb, W., & Murshed, S. M. S. (2023). Pool Boiling Heat Transfer Characteristics of SiO2 and BN Nanoparticles Dispersed Mono and Hybrid Nanofluids. Nanomaterials, 13(19), 2625. https://doi.org/10.3390/nano13192625