Simultaneous 3D Construction and Imaging of Plant Cells Using Plasmonic Nanoprobe-Assisted Multimodal Nonlinear Optical Microscopy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Characterization of Potato Cells Using Common Imaging Techniques
3.2. Nonlinear Optical Properties of Potato Cells
3.3. Nonlinear Optical Properties of Fs Laser-Induced Noble Metal NPs
3.4. 3D Construction and Imaging of Potato Cells via Fs Laser Scan in Noble Metal Ion Solution
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zipfel, W.R.; Williams, R.M.; Webb, W.W. Nonlinear magic: Multiphoton microscopy in the biosciences. Nat. Biotechnol. 2003, 21, 1369–1377. [Google Scholar] [CrossRef] [PubMed]
- Débarre, D.; Supatto, W.; Pena, A.-M.; Fabre, A.; Tordjmann, T.; Combettes, L.; Schanne-Klein, M.-C.; Beaurepaire, E. Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat. Methods 2006, 3, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Hoover, E.E.; Squier, J.A. Advances in multiphoton microscopy technology. Nat. Photonics 2013, 7, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Ouzounov, D.G.; Wang, T.; Wang, M.; Feng, D.D.; Horton, N.G.; Cruz-Hernández, J.C.; Cheng, Y.-T.; Reimer, J.; Tolias, A.S.; Nishimura, N.; et al. In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain. Nat. Methods 2017, 14, 388–390. [Google Scholar] [CrossRef] [PubMed]
- Evans, C.L.; Xu, X.; Kesari, S.; Xie, X.S.; Wong, S.T.C.; Young, G.S. Chemically-selective imaging of brain structures with CARS microscopy. Opt. Express 2007, 15, 12076–12087. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.H.; Kwon, S.-H.; Petrášek, Z.; Park, O.K.; Jun, S.W.; Shin, K.; Choi, M.; Park, Y.I.; Park, K.; Na, H.B.; et al. High-resolution three-photon biomedical imaging using doped ZnS nanocrystals. Nat. Mater. 2013, 12, 359–366. [Google Scholar] [CrossRef]
- Yang, W.; Yuste, R. In vivo imaging of neural activity. Nat. Methods 2017, 14, 349–359. [Google Scholar] [CrossRef]
- Yildirim, M.; Sugihara, H.; So, P.T.C.; Sur, M. Functional imaging of visual cortical layers and subplate in awake mice with optimized three-photon microscopy. Nat. Commun. 2019, 10, 177. [Google Scholar] [CrossRef]
- Hu, C.; Field, J.J.; Kelkar, V.; Chiang, B.; Wernsing, K.; Toussaint, K.C.; Bartels, R.A.; Popescu, G. Harmonic optical tomography of nonlinear structures. Nat. Photonics 2020, 14, 564–569. [Google Scholar] [CrossRef]
- Tong, L.; Cheng, J.-X. Label-free imaging through nonlinear optical signals. Mater. Today 2011, 14, 264–273. [Google Scholar] [CrossRef]
- Chen, M.-Y.; Zhuo, G.-Y.; Chen, K.-C.; Wu, P.-C.; Hsieh, T.-Y.; Liu, T.-M.; Chu, S.-W. Multiphoton imaging to identify grana, stroma thylakoid, and starch inside an intact leaf. BMC Plant Biol. 2014, 14, 175. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, J.; Yu, J.; Attenburrow, D.; Moger, J.; Tirlapur, U.; Urban, J.; Cui, Z.; Winlove, P. The elastin network: Its relationship with collagen and cells in articular cartilage as visualized by multiphoton microscopy. J. Anat. 2009, 215, 682–691. [Google Scholar] [CrossRef] [PubMed]
- Arkill, K.P.; Moger, J.; Winlove, C.P. The structure and mechanical properties of collecting lymphatic vessels: An investigation using multimodal nonlinear microscopy. J. Anat. 2010, 216, 547–555. [Google Scholar] [CrossRef]
- Staedler, D.; Magouroux, T.; Hadji, R.; Joulaud, C.; Extermann, J.; Schwung, S.; Passemard, S.; Kasparian, C.; Clarke, G.; Gerrmann, M.; et al. Harmonic Nanocrystals for Biolabeling: A Survey of Optical Properties and Biocompatibility. ACS Nano 2012, 6, 2542–2549. [Google Scholar] [CrossRef] [PubMed]
- Stender, A.S.; Marchuk, K.; Liu, C.; Sander, S.; Meyer, M.W.; Smith, E.A.; Neupane, B.; Wang, G.; Li, J.; Cheng, J.-X.; et al. Single Cell Optical Imaging and Spectroscopy. Chem. Rev. 2013, 113, 2469–2527. [Google Scholar] [CrossRef]
- Horiuchi, N. Second-harmonic nanoprobes. Nat. Photonics 2011, 5, 7. [Google Scholar] [CrossRef]
- Ni, M.; Zhuo, S.; Iliescu, C.; So, P.T.C.; Mehta, J.S.; Yu, H.; Hauser, C.A.E. Self-assembling amyloid-like peptides as exogenous second harmonic probes for bioimaging applications. J. Biophotonics 2019, 12, e201900065. [Google Scholar] [CrossRef]
- Alifu, N.; Zebibula, A.; Zhang, H.; Ni, H.; Zhu, L.; Xi, W.; Wang, Y.; Zhang, X.; Wu, C.; Qian, J. NIR-IIb excitable bright polymer dots with deep-red emission for in vivo through-skull three-photon fluorescence bioimaging. Nano Res. 2020, 13, 2632–2640. [Google Scholar] [CrossRef]
- Shi, Y.; Pramanik, A.; Tchounwou, C.; Pedraza, F.; Crouch, R.A.; Chavva, S.R.; Vangara, A.; Sinha, S.S.; Jones, S.; Sardar, D.; et al. Multifunctional Biocompatible Graphene Oxide Quantum Dots Decorated Magnetic Nanoplatform for Efficient Capture and Two-Photon Imaging of Rare Tumor Cells. ACS Appl. Mater. Interfaces 2015, 7, 10935–10943. [Google Scholar] [CrossRef]
- Durr, N.J.; Larson, T.; Smith, D.K.; Korgel, B.A.; Sokolov, K.; Ben-Yakar, A. Two-Photon Luminescence Imaging of Cancer Cells Using Molecularly Targeted Gold Nanorods. Nano Lett. 2007, 7, 941–945. [Google Scholar] [CrossRef]
- Butet, J.; Bachelier, G.; Russier-Antoine, I.; Jonin, C.; Benichou, E.; Brevet, P.F. Interference between Selected Dipoles and Octupoles in the Optical Second-Harmonic Generation from Spherical Gold Nanoparticles. Phys. Rev. Lett. 2010, 105, 077401. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.S.; Jones, S.; Demeritte, T.; Chavva, S.R.; Shi, Y.; Burrell, J.; Pramanik, A.; Ray, P.C. Multimodal nonlinear optical imaging of live cells using plasmon-coupled DNA-mediated gold nanoprism assembly. J. Phys. Chem. C 2016, 120, 4546–4555. [Google Scholar] [CrossRef] [PubMed]
- Tai, S.-P.; Wu, Y.; Shieh, D.-B.; Chen, L.-J.; Lin, K.-J.; Yu, C.-H.; Chu, S.-W.; Chang, C.-H.; Shi, X.-Y.; Wen, Y.-C.; et al. Molecular Imaging of Cancer Cells Using Plasmon-Resonant-Enhanced Third-Harmonic-Generation in Silver Nanoparticles. Adv. Mater. 2007, 19, 4520–4523. [Google Scholar] [CrossRef]
- Masia, F.; Langbein, W.; Watson, P.; Borri, P. Resonant four-wave mixing of gold nanoparticles for three-dimensional cell microscopy. Opt. Lett. 2009, 34, 1816–1818. [Google Scholar] [CrossRef]
- Tripathi, D.K.; Tripathi, A.; Shweta; Singh, S.; Singh, Y.; Vishwakarma, K.; Yadav, G.; Sharma, S.; Singh, V.K.; Mishra, R.K.; et al. Uptake, Accumulation and Toxicity of Silver Nanoparticle in Autotrophic Plants, and Heterotrophic Microbes: A Concentric Review. Front. Microbiol. 2017, 8, 07. [Google Scholar] [CrossRef]
- Cisek, R.; Tokarz, D.; Krouglov, S.; Steup, M.; Emes, M.J.; Tetlow, I.J.; Barzda, V. Second Harmonic Generation Mediated by Aligned Water in Starch Granules. J. Phys. Chem. B 2014, 118, 14785–14794. [Google Scholar] [CrossRef]
- Li, D.; Xiong, W.; Jiang, L.; Xiao, Z.; Rabiee Golgir, H.; Wang, M.; Huang, X.; Zhou, Y.; Lin, Z.; Song, J.; et al. Multimodal Nonlinear Optical Imaging of MoS2 and MoS2-Based van der Waals Heterostructures. ACS Nano 2016, 10, 3766–3775. [Google Scholar] [CrossRef]
- Jiang, X.; Zhong, J.; Liu, Y.; Yu, H.; Zhuo, S.; Chen, J. Two-photon fluorescence and second-harmonic generation imaging of collagen in human tissue based on multiphoton microscopy. Scanning 2011, 33, 53–56. [Google Scholar] [CrossRef]
- Zhang, N.; Li, X.; Jiang, L.; Shi, X.; Li, C.; Lu, Y. Femtosecond double-pulse fabrication of hierarchical nanostructures based on electron dynamics control for high surface-enhanced Raman scattering. Opt. Lett. 2013, 38, 3558–3561. [Google Scholar] [CrossRef]
- Meng, G.; Ran, P.; Xu, Y. A nanoparticle-decorated silicon substrate for SERS via circularly polarized laser one-step irradiation: Ge Meng, Peng Ran & Yongda Xu. In Civil, Architecture and Environmental Engineering; CRC Press: Boca Raton, FL, USA, 2017; pp. 958–961. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Lei, Y.; Li, D. Simultaneous 3D Construction and Imaging of Plant Cells Using Plasmonic Nanoprobe-Assisted Multimodal Nonlinear Optical Microscopy. Nanomaterials 2023, 13, 2626. https://doi.org/10.3390/nano13192626
Liu K, Lei Y, Li D. Simultaneous 3D Construction and Imaging of Plant Cells Using Plasmonic Nanoprobe-Assisted Multimodal Nonlinear Optical Microscopy. Nanomaterials. 2023; 13(19):2626. https://doi.org/10.3390/nano13192626
Chicago/Turabian StyleLiu, Kun, Yutian Lei, and Dawei Li. 2023. "Simultaneous 3D Construction and Imaging of Plant Cells Using Plasmonic Nanoprobe-Assisted Multimodal Nonlinear Optical Microscopy" Nanomaterials 13, no. 19: 2626. https://doi.org/10.3390/nano13192626
APA StyleLiu, K., Lei, Y., & Li, D. (2023). Simultaneous 3D Construction and Imaging of Plant Cells Using Plasmonic Nanoprobe-Assisted Multimodal Nonlinear Optical Microscopy. Nanomaterials, 13(19), 2626. https://doi.org/10.3390/nano13192626