Superhydrophobic Flexible Strain Sensors Constructed Using Nanomaterials: Their Fabrications and Sustainable Applications
Abstract
:1. Introduction
2. Superhydrophobic Flexible Sensor Mechanism
2.1. Overview of Superhydrophobic Surfaces
2.2. The Conductive Mechanism of Sensors
2.2.1. Percolation Theory of Composite Materials
2.2.2. Tunneling Effect of Composite Materials
3. Performance Parameters of Superhydrophobic Flexible Sensors
3.1. Research on Sensor Sensitivity
3.2. Reduction in Sensor Response Time
3.3. Research on Increasing the Sensor Sensing Operating Range
3.4. Research on Sensor Cyclic Stability
4. Surface Preparation Technology of Superhydrophobic Flexible Sensors
4.1. Photolithography Manufacturing of Superhydrophobic Flexible Sensors
4.2. Surface Etching Manufacturing of Superhydrophobic Flexible Sensors
4.3. Dip Coating Manufacturing of Superhydrophobic Flexible Sensors
4.4. Electrodeposition Manufacturing of Superhydrophobic Flexible Sensors
4.5. Electrospinning
5. Application Direction of Superhydrophobic Flexible Sensors
5.1. Flexible Sensors for Human Health Detection
5.2. Motion Detection Function of Flexible Sensors
5.3. Flexible Sensor Combined with Anti-Electromagnetic Interference
5.4. Superhydrophobic Surface and Anti-Icing/De-Icing Union
6. Future Perspectives
- (1)
- The hydrophobic and rough surface structure of the flexible sensor changes after stretching or bending, resulting in weakened roughness and hydrophobicity. Therefore, improving the mechanical properties of the sensor is necessary to enhance superhydrophobic stability.
- (2)
- The drugs used in the preparation of superhydrophobic flexible sensors sometimes contain toxic chemicals, which are harmful to experimenters and contribute to environmental pollution. Finding suitable sensing and superhydrophobic materials is crucial to reduce preparation costs and promote green manufacturing.
- (3)
- The superhydrophobic flexible strain sensor has expanded the range of multifunctional applications compared to its ordinary counterpart. However, further research and improvement are needed in areas such as skin affinity, air permeability, and comfort.
- (4)
- Most superhydrophobic flexible strain sensors face challenges due to their complex and time-consuming preparation processes. Therefore, it is crucial to develop preparation methods that are efficient, cost-effective, and suitable for commercial production.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Indri, M.; Lachello, L.; Lazzero, I.; Sibona, F.; Trapani, S. Smart Sensors Applications for a New Paradigm of a Production Line. Sensors 2019, 19, 650. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.C.; Cao, W.P.; Zhang, G.J.; Wang, Z.H.; Tan, H.Y.; Miao, J.W.; Li, Z.D.; Zhang, W.D.; Wang, R.X. Design and Simulation of Flexible Underwater Acoustic Sensor Based on 3D Buckling Structure. Micromachines 2021, 12, 1536. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Scardaci, V.; Kim, H.Y.; Hallam, T.; Nolan, H.; Bolf, B.E.; Maltbie, G.S.; Abbott, J.E.; Duesberg, G.S. Highly sensitive, transparent, and flexible gas sensors based on gold nanoparticle decorated carbon nanotubes. Sens. Actuators B-Chem. 2013, 188, 571–575. [Google Scholar] [CrossRef]
- Fan, W.L.; Xie, Z.Y.; Cui, Y. Flexible Glass-based Amperometric Sensors for Hydrogen Peroxide. Electroanalysis 2017, 29, 1805–1809. [Google Scholar] [CrossRef]
- Liu, J.X.; Wang, M.F.; Wang, P.; Hou, F.N.; Meng, C.Z.; Hashimoto, K.; Guo, S.J. Cost-Efficient Flexible Supercapacitive Tactile Sensor with Superior Sensitivity and High Spatial Resolution for Human-Robot Interaction. IEEE Access 2020, 8, 64836–64845. [Google Scholar] [CrossRef]
- Minakov, I.; Passerone, R. PASES: An energy-aware design space exploration framework for wireless sensor networks. J. Syst. Archit. 2013, 59, 626–642. [Google Scholar] [CrossRef]
- Wang, T.H.; Cook, D.J. sMRT: Multi-Resident Tracking in Smart Homes with Sensor Vectorization. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 2809–2821. [Google Scholar] [CrossRef] [PubMed]
- Kwak, Y.H.; Kim, W.; Park, K.B.; Kim, K.; Seo, S. Flexible heartbeat sensor for wearable device. Biosens. Bioelectron. 2017, 94, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Chen, X.; Niu, Y.; He, X.R.; Hu, Y.L.; Wang, C. Advances in flexible sensors with MXene materials. New Carbon Mater. 2022, 37, 303–320. [Google Scholar] [CrossRef]
- Lan, K.B.; Wang, Z.; Yang, X.D.; Wei, J.Q.; Qin, Y.X.; Qin, G.X. Flexible silicon nanowires sensor for acetone detection on plastic substrates. Nanotechnology 2022, 33, 155502. [Google Scholar] [CrossRef] [PubMed]
- Choi, G.R.; Park, H.K.; Huh, H.; Kim, Y.J.; Ham, H.; Kim, H.W.; Lim, K.T.; Kim, S.Y.; Kang, I. Strain Sensing Characteristics of Rubbery Carbon Nanotube Composite for Flexible Sensors. J. Nanosci. Nanotechnol. 2016, 16, 1607–1611. [Google Scholar] [CrossRef]
- Gao, M.; Xia, Z.D.; Wang, X.L.; Wang, J.S.; Huang, P. Fabrication of a flexible capacitor sensor with surface-fabric-structured conductive silicon rubber. Sens. Actuators A-Phys. 2019, 295, 141–150. [Google Scholar] [CrossRef]
- Qin, R.Z.; Li, X.; Hu, M.J.; Shan, G.C.; Seeram, R.; Yin, M. Preparation of high-performance MXene/PVA-based flexible pressure sensors with adjustable sensitivity and sensing range. Sens. Actuators A-Phys. 2022, 338, 113458. [Google Scholar] [CrossRef]
- Chen, D.X.; Li, Y.T.; Pan, M.C.; Tian, W.G. Flexible planar electromagnetic sensor array fabricated with printing electronic technology. Measurement 2018, 129, 499–503. [Google Scholar] [CrossRef]
- Dandamudi, P.; Mahmud, A.; Gonzalez-Veto, Y.; Kozicki, M.N.; Bamaby, H.J.; Roos, B.; Alford, T.L.; Ailavajhala, M.; Mitkova, M.; Holbert, K.E. Flexible Sensors Based on Radiation-Induced Diffusion of Ag in Chalcogenide Glass. IEEE Trans. Nucl. Sci. 2014, 61, 3432–3437. [Google Scholar] [CrossRef]
- Kojic, T.; Radovanovic, M.; Stmanovic, G.M.; Pivas, B.; Medic, D.; Al-Salami, H. Comparison of performances of flexible sensors on foil and paper for efficient bacterial concentration measurement. Sens. Rev. 2020, 40, 1–7. [Google Scholar] [CrossRef]
- Jia, L.C.; Sun, W.J.; Xu, L.; Gao, J.F.; Dai, K.; Yan, D.X.; Li, Z.M. Facile Construction of a Superhydrophobic Surface on a Textile with Excellent Electrical Conductivity and Stretchability. Ind. Eng. Chem. Res. 2020, 59, 7546–7553. [Google Scholar] [CrossRef]
- He, J.M.; Shi, F.; Liu, Q.H.; Pang, Y.J.; He, D.; Sun, W.C.; Peng, L.; Yang, J.; Qu, M.N. Wearable superhydrophobic PPy/MXene pressure sensor based on cotton fabric with superior sensitivity for human detection and information transmission. Colloids Surf. A-Physicochem. Eng. Asp. 2022, 642, 128676. [Google Scholar] [CrossRef]
- Zhang, M.P.; Gao, X.P.; Lu, C.; Yao, D.H.; Wu, L.L.; Li, D.X.; Fang, H.Q.; Shiwei, A.; Sun, Y.F. Ultrathin Superhydrophobic Flexible Tactile Sensors for Normal and Shear Force Discrimination. ACS Appl. Mater. Interfaces 2021, 13, 55735–55746. [Google Scholar] [CrossRef]
- Gao, J.F.; Wang, L.; Guo, Z.; Li, B.; Wang, H.; Luo, J.C.; Huang, X.W.; Xue, H.G. Flexible, superhydrophobic, and electrically conductive polymer nanofiber composite for multifunctional sensing applications. Chem. Eng. J. 2020, 381, 122778. [Google Scholar] [CrossRef]
- Xiao, X.F.; Ren, L.P.; Wang, S.J.; Zhang, Q.; Zhang, Y.W.; Liu, R.N.; Xu, W.L. Controllable Production of Micro-nanoscale Metal-Organic Frameworks Coatings on Cotton Fabric for Sensing Cu2+. Fibers Polym. 2020, 21, 2003–2009. [Google Scholar] [CrossRef]
- Wang, Z.C.; Zhang, X.; Cao, T.; Wang, T.; Sun, L.X.; Wang, K.Y.; Fan, X.D. Antiliquid-Interfering, Antibacteria, and Adhesive Wearable Strain Sensor Based on Superhydrophobic and Conductive Composite Hydrogel. ACS Appl. Mater. Interfaces 2021, 13, 46022–46032. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, B.; Hua, Z.K.; Zhang, J.Y.; Guo, P.; Hao, D.D.; Gao, Y.S.; Huang, J. Recent advancements in flexible and wearable sensors for biomedical and healthcare applications. J. Phys. D-Appl. Phys. 2022, 55, 134001. [Google Scholar] [CrossRef]
- Liu, B.Y.; Wang, R.R.; Sun, J. Advances in Visualization of Flexible Wearable Sensors. Chin. J. Anal. Chem. 2023, 51, 305–315. [Google Scholar] [CrossRef]
- Abdelaal, A.; Sarayloo, M.; Nims, D.K.; Mohammadian, B.; Heil, J.; Sojoudi, H. A flexible surface-mountable sensor for ice detection and non-destructive measurement of liquid water content in snow. Cold Reg. Sci. Technol. 2022, 195, 103469. [Google Scholar] [CrossRef]
- Load, M.; Ghule, B. Fabrication Techniques of Superhydrophobic Coatings: A Comprehensive Review. Phys. Status Solidi A-Appl. Mater. Sci. 2022, 219, 2200109. [Google Scholar] [CrossRef]
- Ghosh, S.; Nitin, B.; Remanan, S.; Bhattacharjee, Y.; Ghorai, A.; Dey, T.; Das, T.K.; Das, N.C. A Multifunctional Smart Textile Derived from Merino Wool/Nylon Polymer Nanocomposites as Next Generation Microwave Absorber and Soft Touch Sensor. ACS Appl. Mater. Interfaces 2020, 12, 17988–18001. [Google Scholar] [CrossRef]
- Chu, Z.M.; Jiao, W.C.; Huang, Y.F.; Zheng, Y.T.; Wang, R.G.; He, X.D. Superhydrophobic gradient wrinkle strain sensor with ultra-high sensitivity and broad strain range for motion monitoring. J. Mater. Chem. A 2021, 9, 9634–9643. [Google Scholar] [CrossRef]
- Liu, Z.L.; Wang, J.X.; Zhang, Q.; Li, Z.; Li, Z.; Cheng, L.; Dai, F.Y. Electrospinning Silk Fibroin/Graphene Nanofiber Membrane Used for 3D Wearable Pressure Sensor. Polymers 2022, 14, 3875. [Google Scholar] [CrossRef]
- Dai, S.X.; Zhu, Y.H.; Gu, Y.Z.; Du, Z.L. Biomimetic fabrication and photoelectric properties of superhydrophobic ZnO nanostructures on flexible PDMS substrates replicated from rose petal. Appl. Phys. A-Mater. Sci. Process. 2019, 125, 138. [Google Scholar] [CrossRef]
- Wang, L.; Wang, D.; Wu, Z.F.; Luo, J.C.; Huang, X.W.; Gao, Q.; Lai, X.J.; Tang, L.C.; Xue, H.G.; Gao, J.F. Self-Derived Superhydrophobic and Multifunctional Polymer Sponge Composite with Excellent Joule Heating and Photothermal Performance for Strain/Pressure Sensors. ACS Appl. Mater. Interfaces 2020, 12, 13316–13326. [Google Scholar] [CrossRef]
- Zu, G.Q.; Kanamori, K.; Nakanishi, K.; Huang, J. Superhydrophobic Ultraflexible Triple-Network Graphene/Polyorganosiloxane Aerogels for a High-Performance Multifunctional Temperature/Strain/Pressure Sensing Array. Chem. Mater. 2019, 31, 6276–6285. [Google Scholar] [CrossRef]
- Li, C.Y.; Wang, P.; Zhang, D. Self-healable, stretchable triboelectric nanogenerators based on flexible polyimide for energy harvesting and self-powered sensors. Nano Energy 2023, 109, 108285. [Google Scholar] [CrossRef]
- Qi, M.; Yang, R.Q.; Wang, Z.; Liu, Y.T.; Zhang, Q.C.; He, B.; Li, K.W.; Yang, Q.; Wei, L.; Pan, C.F.; et al. Bioinspired Self-healing Soft Electronics. Adv. Funct. Mater. 2023, 33, 2214479. [Google Scholar] [CrossRef]
- Peng, Y.X.; Wang, J.X.; Tian, X.Q.; Liu, T.; Geng, W.D.; Zhu, Z.F. An Electronic Skin Strain Sensor for Adaptive Angle Calculation. IEEE Sens. J. 2022, 22, 12629–12636. [Google Scholar] [CrossRef]
- Jeong, D.M.; Choi, Y.H.; Yoo, S.J. Adaptive Output-Feedback Control of a Class of Nonlinear Systems with Unknown Sensor Sensitivity and Its Experiment for Flexible-Joint Robots. J. Electr. Eng. Technol. 2020, 15, 907–918. [Google Scholar] [CrossRef]
- Wang, D.H.; Huang, J.X.; Guo, Z.G. Tomato-lotus inspired edible superhydrophobic artificial lotus leaf. Chem. Eng. J. 2020, 400, 125883. [Google Scholar] [CrossRef]
- Liu, P.; Gao, Y.N.; Wang, F.Z.; Yang, J.; Yu, X.W.; Zhang, W.Q.; Yang, L. Superhydrophobic and self-cleaning behavior of Portland cement with lotus-leaf-like microstructure. J. Clean Prod. 2017, 156, 775–785. [Google Scholar] [CrossRef]
- Pan, L.C.; Hsieh, S.Y.; Chen, W.C.; Lin, F.T.; Lu, C.H.; Cheng, Y.L.; Chien, H.W.; Yang, H.T. Self-Assembly of Shark Scale-Patterned Tunable Superhydrophobic/Antifouling Structures with Visual Color Response. ACS Appl. Mater. Interfaces 2023, 15, 35311–35320. [Google Scholar] [CrossRef]
- Liu, Y.; Gu, H.M.; Jia, Y.; Liu, J.; Zhang, H.; Wang, R.M.; Zhang, B.L.; Zhang, H.P.; Zhang, Q.Y. Design and preparation of biomimetic polydimethylsiloxane (PDMS) films with superhydrophobic, self-healing and drag reduction properties via replication of shark skin and SI-ATRP. Chem. Eng. J. 2019, 356, 318–328. [Google Scholar] [CrossRef]
- Liu, L.P.; Jiao, Z.B.; Zhang, J.Q.; Wang, Y.C.; Zhang, C.C.; Meng, X.C.; Jiang, X.H.; Niu, S.C.; Han, Z.W.; Ren, L.Q. Bioinspired, Superhydrophobic, and Paper-Based Strain Sensors for Wearable and Underwater Applications. ACS Appl. Mater. Interfaces 2021, 13, 1967–1978. [Google Scholar] [CrossRef]
- Niu, B.; Yang, S.; Hua, T.; Tian, X.; Koo, M. Facile fabrication of highly conductive, waterproof, and washable e-textiles for wearable applications. Nano Res. 2021, 14, 1043–1052. [Google Scholar] [CrossRef]
- Su, C.C.; Huang, X.C.; Zhang, L.L.; Zhang, Y.Z.; Yu, Z.H.; Chen, C.L.; Ye, Y.M.; Guo, S.S. Robust superhydrophobic wearable piezoelectric nanogenerators for self-powered body motion sensors. Nano Energy 2023, 107, 108095. [Google Scholar] [CrossRef]
- Ipekci, H.H.; Gozutok, Z.; Celik, N.; Onses, M.S.; Uzunoglu, A. Ink-jet printing of particle-free silver inks on fabrics with a superhydrophobic protection layer for fabrication of robust electrochemical sensors. Microchem. J. 2021, 164, 106038. [Google Scholar] [CrossRef]
- Liu, X.; Chen, K.; Zhang, D.K.; Guo, Z.G. One-Step Methods to Fabricate Durable Superhydrophobic Coatings for Flexible Electronic Sensors. Coatings 2021, 11, 95. [Google Scholar] [CrossRef]
- Wychowaniec, J.K.; Saini, H.; Scheibe, B.; Dubal, D.P.; Schneemann, A.; Jayaramulu, K. Hierarchical porous metal-organic gels and derived materials: From fundamentals to potential applications. Chem. Soc. Rev. 2022, 51, 9068–9126. [Google Scholar] [CrossRef]
- Maurer, J.A.; Miller, M.J.; Bartolucci, S.F. Self-cleaning superhydrophobic nanocomposite surfaces generated by laser pulse heating. J. Colloid Interface Sci. 2018, 524, 204–208. [Google Scholar] [CrossRef]
- Gong, X.; He, S. Highly Durable Superhydrophobic Polydimethylsiloxane/Silica Nanocomposite Surfaces with Good Self-Cleaning Ability. ACS Omega 2020, 5, 4100–4108. [Google Scholar] [CrossRef]
- Chen, K.L.; Yuan, Z.H.; Dai, S.; Zhou, J.L.; Yu, K.J. Preparation and performance of self-cleaning photothermal-induced self-healing flexible sensors. Compos. Sci. Technol. 2023, 242, 110194. [Google Scholar] [CrossRef]
- Lu, C.X.; Gao, Y.; Yu, S.J.; Zhou, H.; Wang, X.; Li, L.W. Non-Fluorinated Flexible Superhydrophobic Surface with Excellent Mechanical Durability and Self-Cleaning Performance. ACS Appl. Mater. Interfaces 2022, 14, 4750–4758. [Google Scholar] [CrossRef]
- Fan, S.M.; Jiang, S.J.; Wang, Z.J.; Liang, P.C.; Fan, W.X.; Zhuo, K.L.; Xu, G.R. Fabrication of Durable Superhydrophobic Surface for Versatile Oil/Water Separation Based on HDTMS Modified PPy/ZnO. Nanomaterials 2022, 12, 2510. [Google Scholar] [CrossRef] [PubMed]
- Barthwal, S.; Barthwal, S.; Singh, B.; Singh, N.B. Multifunctional and fluorine-free superhydrophobic composite coating based on PDMS modified MWCNTs/ZnO with self-cleaning, oil-water separation, and flame retardant properties. Colloids Surf. A-Physicochem. Eng. Asp. 2020, 597, 124776. [Google Scholar] [CrossRef]
- Xu, H.D.; Ye, Q.Q.; Chen, N.L.; Feng, H.X.; Qiu, J.H. Designing and Exploring a Brand-new Strong Superhydrophobic-Conductive Polyaniline-Polysiloxane Composite Anti-corrosion Coating. Chem. Lett. 2021, 50, 260–264. [Google Scholar] [CrossRef]
- Wang, H.; Hu, H.M.; Zhou, C.Y.; Wei, W.R.; Fan, B.; Wang, H.B.; Dong, S.H. Fabrication of self-healable superhydrophobic polyurethane coating based on functional CeO2 nanoparticles for long-term anti-corrosion application. Prog. Org. Coat. 2023, 183, 107799. [Google Scholar] [CrossRef]
- Barthwal, S.; Lim, S.H. A durable, fluorine-free, and repairable superhydrophobic aluminum surface with hierarchical micro/nanostructures and its application for continuous oil-water separation. J. Membr. Sci. 2021, 618, 118716. [Google Scholar] [CrossRef]
- Barthwal, S.; Lee, B.; Lim, S.H. Fabrication of robust and durable slippery anti-icing coating on textured superhydrophobic aluminum surfaces with infused silicone oil. Appl. Surf. Sci. 2019, 496, 143677. [Google Scholar] [CrossRef]
- Jian, Y.K.; Handschuh-Wang, S.; Zhang, J.W.; Lu, W.; Zhou, X.C.; Chen, T. Biomimetic anti-freezing polymeric hydrogels: Keeping soft-wet materials active in cold environments. Mater. Horiz. 2021, 8, 351–369. [Google Scholar] [CrossRef]
- Lin, L.W.; Wang, L.; Li, B.; Luo, J.C.; Huang, X.W.; Gao, Q.; Xue, H.G.; Gao, J.F. Dual conductive network enabled superhydrophobic and high performance strain sensors with outstanding electro-thermal performance and extremely high gauge factors. Chem. Eng. J. 2020, 385, 123391. [Google Scholar] [CrossRef]
- Sun, Y.H.; Huang, J.X.; Zhao, S.Y.; Guo, Z.G. Fabrication of durable self-repairing superhydrophobic fabrics via a fluorinate-free waterborne biomimetic silicification strategy. New J. Chem. 2019, 43, 5032–5038. [Google Scholar] [CrossRef]
- Liu, X.J.; Bai, Y.; Zhao, X.X.; Chen, J.; Chen, X.; Yang, W.S. Conductive and self-healing hydrogel for flexible electrochemiluminescence sensor. Microchim. Acta 2023, 190, 123. [Google Scholar] [CrossRef]
- Liu, X.; Chen, J.L.; Gu, L.X.; Nguyen, L.T.; Cao, J.Q.; Liu, H.L.; Du, Z.Q.; Yu, W.D. A superhydrophobic and flame-retardant cotton fabric fabricated by an eco-friendly assembling method. Text. Res. J. 2022, 92, 2873–2885. [Google Scholar] [CrossRef]
- Wu, L.S.; Wang, L.; Guo, Z.; Luo, J.C.; Xue, H.G.; Gao, J.F. Durable and Multifunctional Superhydrophobic Coatings with Excellent Joule Heating and Electromagnetic Interference Shielding Performance for Flexible Sensing Electronics. ACS Appl. Mater. Interfaces 2019, 11, 34338–34347. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.W.; Zhao, Z.Z.; Zeng, X.W.; Liu, X.Y.; Hu, Y.F. A Tubular Flexible Triboelectric Nanogenerator with a Superhydrophobic Surface for Human Motion Detecting. Sensors 2021, 21, 3634. [Google Scholar] [CrossRef] [PubMed]
- E, J.Q.; Jin, Y.; Deng, Y.W.; Zuo, W.; Zhao, X.H.; Han, D.D.; Peng, Q.G.; Zhang, Z.Q. Wetting Models and Working Mechanisms of Typical Surfaces Existing in Nature and Their Application on Superhydrophobic Surfaces: A Review. Adv. Mater. Interfaces 2018, 5, 1701052. [Google Scholar] [CrossRef]
- Zong, C.Y.; Hu, M.; Azhar, U.; Chen, X.; Zhang, Y.B.; Zhang, S.X.; Lu, C.H. Smart Copolymer-Functionalized Flexible Surfaces with Photoswitchable Wettability: From Superhydrophobicity with “Rose Petal” Effect to Superhydrophilicity. ACS Appl. Mater. Interfaces 2019, 11, 25436–25444. [Google Scholar] [CrossRef]
- Zhu, H.; Guo, Z.G. Wetting Characterizations of Oilseed Rapes. J. Bionic Eng. 2016, 13, 213–219. [Google Scholar] [CrossRef]
- Kim, T.W. Assessment of Hydro/Oleophobicity for Shark Skin Replica with Riblets. J. Nanosci. Nanotechnol. 2014, 14, 7562–7568. [Google Scholar] [CrossRef]
- Qin, Y.J.; Qu, M.C.; Pan, Y.M.; Zhang, C.H.; Schubert, D.W. Fabrication, characterization and modelling of triple hierarchic PET/CB/TPU composite fibres for strain sensing. Compos. Part A-Appl. Sci. Manuf. 2020, 129, 105724. [Google Scholar] [CrossRef]
- Zhang, K.; Li, H.; Xin, L.; Li, P.C.; Sun, W.X. Engulfed small Wenzel droplets on hierarchically structured superhydrophobic surface by large Cassie droplets: Experiments and molecular dynamics simulations. Appl. Surf. Sci. 2023, 608, 155000. [Google Scholar] [CrossRef]
- Yang, C.W.; He, F.; Hao, P.F. The apparent contact angle of water droplet on the micro-structured hydrophobic surface. Sci. China-Chem. 2010, 53, 912–916. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, X.X. Modulating the percolation network of polymer nanocomposites for flexible sensors. J. Appl. Phys. 2020, 128, 220901. [Google Scholar] [CrossRef]
- Yang, H.; Yuan, L.; Yao, X.F.; Fang, D.N. Piezoresistive response of graphene rubber composites considering the tunneling effect. J. Mech. Phys. Solids 2020, 139, 103943. [Google Scholar] [CrossRef]
- Jia, S.S.; Deng, S.L.; Qing, Y.; He, G.J.; Deng, X.H.; Luo, S.; Wu, Y.Q.; Guo, J.; Carmalt, C.J.; Lu, Y.; et al. A coating-free superhydrophobic sensing material for full-range human motion and microliter droplet impact detection. Chem. Eng. J. 2021, 410, 128418. [Google Scholar] [CrossRef]
- Chu, Z.M.; Jiao, W.C.; Li, J.; Guo, H.Y.; Zheng, Y.T.; Wang, R.G.; He, X.D. A novel wrinkle-gradient strain sensor with anti-water interference and high sensing performance. Chem. Eng. J. 2021, 421, 129873. [Google Scholar] [CrossRef]
- Ho, D.H.; Cheon, S.; Hong, P.; Park, J.H.; Suk, J.W.; Kim, D.H.; Han, J.T.; Cho, J.H. Multifunctional Smart Textronics with Blow-Spun Nonwoven Fabrics. Adv. Funct. Mater. 2019, 29, 1900025. [Google Scholar] [CrossRef]
- Wu, J.J.; Li, H.Q.; Lai, X.J.; Chen, Z.H.; Zeng, X.R. Conductive and superhydrophobic F-rGO@CNTs/chitosan aerogel for piezoresistive pressure sensor. Chem. Eng. J. 2020, 386, 123998. [Google Scholar] [CrossRef]
- Wang, L.; Huang, X.W.; Wang, D.; Zhang, W.M.; Gao, S.J.; Luo, J.C.; Guo, Z.; Xue, H.G.; Gao, J.F. Lotus leaf inspired superhydrophobic rubber composites for temperature stable piezoresistive sensors with ultrahigh compressibility and linear working range. Chem. Eng. J. 2021, 405, 127025. [Google Scholar] [CrossRef]
- Yao, D.H.; Wu, L.L.; Peng, S.G.; Gao, X.P.; Lu, C.; Yu, Z.Q.; Wang, X.; Li, C.F.; He, Y.X. Use of Surface Penetration Technology to Fabricate Superhydrophobic Multifunctional Strain Sensors with an Ultrawide Sensing Range. ACS Appl. Mater. Interfaces 2021, 13, 11284–11295. [Google Scholar] [CrossRef]
- Choi, B.; Lee, J.; Han, H.; Woo, J.; Park, K.; Seo, J.; Lee, T. Highly Conductive Fiber with Waterproof and Self-Cleaning Properties for Textile Electronics. ACS Appl. Mater. Interfaces 2018, 10, 36094–36101. [Google Scholar] [CrossRef]
- Liu, K.; Yang, C.; Zhang, S.Y.; Wang, Y.; Zou, R.; Alamusi; Deng, Q.B.; Hu, N. Laser direct writing of a multifunctional superhydrophobic composite strain sensor with excellent corrosion resistance and Anti-Icing/Deicing performance. Mater. Des. 2022, 218, 110689. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, B.; Long, J.Y.; Kuang, Y.C.; Chen, X.; Hou, M.X.; Gao, J.; Zhou, S.; Fan, B.; He, Y.B.; et al. Interfacial Laser-Induced Graphene Enabling High-Performance Liquid-Solid Triboelectric Nanogenerator. Adv. Mater. 2021, 33, 2104290. [Google Scholar] [CrossRef]
- Liu, K.; Yang, C.; Song, L.H.; Wang, Y.; Wei, Q.; Alamusi; Deng, Q.B.; Hu, N. Highly stretchable, superhydrophobic and wearable strain sensors based on the laser-irradiated PDMS/CNT composite. Compos. Sci. Technol. 2022, 218, 109148. [Google Scholar] [CrossRef]
- Cheng, M.; Liu, Y.; Zhong, B.W.; Wang, H.; Liu, Y.C.Y.; Liang, X.; Chen, W.X.; Chen, S.D.; Li, M.; Xia, W.J.; et al. Superhydrophobic Surface with Controllable Adhesion for Anti-Roof-Collapse Application in Flexible Microfluidics. Adv. Mater. Interfaces 2019, 6, 1901178. [Google Scholar] [CrossRef]
- Pei, X.Y.; Wang, J.; Zhang, J.W.; Liu, S.; Dai, X.G.; Li, Y.; Chen, J.B.; Wang, C.W. Facile preparation of superhydrophobic conductive textiles and the application of real-time sensor of joint motion sensor. Colloids Surf. A-Physicochem. Eng. Asp. 2021, 628, 127257. [Google Scholar] [CrossRef]
- Song, J.; Tan, Y.L.; Chu, Z.Y.; Xiao, M.; Li, G.Y.; Jiang, Z.H.; Wang, J.; Hu, T.J. Hierarchical Reduced Graphene Oxide Ridges for Stretchable, Wearable, and Washable Strain Sensors. ACS Appl. Mater. Interfaces 2019, 11, 1283–1293. [Google Scholar] [CrossRef]
- Chen, A.F.; Huang, H.X. Rapid transfer of hierarchical microstructures onto biomimetic polymer surfaces with gradually tunable water adhesion from slippery to sticky superhydrophobicity. Mater. Res. Express 2016, 3, 025011. [Google Scholar] [CrossRef]
- Gao, J.F.; Li, B.; Huang, X.W.; Wang, L.; Lin, L.W.; Wang, H.; Xue, H.G. Electrically conductive and fluorine free superhydrophobic strain sensors based on SiO2/graphene-decorated electrospun nanofibers for human motion monitoring. Chem. Eng. J. 2019, 373, 298–306. [Google Scholar] [CrossRef]
- Ding, Y.R.; Xue, C.H.; Fan, Q.Q.; Zhao, L.L.; Tian, Q.Q.; Guo, X.J.; Zhang, J.; Jia, S.T.; An, Q.F. Fabrication of superhydrophobic conductive film at air/water interface for flexible and wearable sensors. Chem. Eng. J. 2021, 404, 126489. [Google Scholar] [CrossRef]
- Lin, L.; Choi, Y.; Chen, T.; Kim, H.; Lee, K.S.; Kang, J.M.; Lyu, L.; Gao, J.F.; Piao, Y. Superhydrophobic and wearable TPU based nanofiber strain sensor with outstanding sensitivity for high-quality body motion monitoring. Chem. Eng. J. 2021, 419, 129513. [Google Scholar] [CrossRef]
- Li, T.T.; Wang, Y.T.; Peng, H.K.; Zhang, X.F.; Shiu, B.C.; Lin, J.H.; Lou, C.W. Lightweight, flexible and superhydrophobic composite nanofiber films inspired by nacre for highly electromagnetic interference shielding. Compos. Part A-Appl. Sci. Manuf. 2020, 128, 105685. [Google Scholar] [CrossRef]
- Luo, Y.; Cao, W.; Wu, K.L.; Wang, H.A.; Wang, X.; Lin, H.J.; Rui, K.; Yan, Y.; Zhu, J.X. Electron transport engineering of carbon hybrid network towards physiological signal monitoring and efficient heat management. Chem. Eng. J. 2023, 465, 142734. [Google Scholar] [CrossRef]
- Zhang, Q.; Ji, K.; Huo, T.; Khan, M.N.; Hu, Z.; Yuan, C.; Zhao, J.; Chen, J.; Wang, Z.; Dai, Z. Biomimetic Patch with Wicking-Breathable and Multi-mechanism Adhesion for Bioelectrical Signal Monitoring. ACS Appl Mater Interfaces 2022, 14, 48438–48448. [Google Scholar] [CrossRef] [PubMed]
- Li, L.H.; Bai, Y.Y.; Li, L.L.; Wang, S.Q.; Zhang, T. A Superhydrophobic Smart Coating for Flexible and Wearable Sensing Electronics. Adv. Mater. 2017, 29, 1702517. [Google Scholar] [CrossRef]
- Zheng, R.L.; Wang, Y.Y.; Zhang, Z.X.; Zhang, Y.F.; Liu, J.Z. High sensitivity and broad detection range flexible capacitive pressure sensor based on rGO cotton fiber for human motion detection. Smart Mater. Struct. 2022, 31, 025019. [Google Scholar] [CrossRef]
- Sahoo, B.N.; Woo, J.; Algadi, H.; Lee, J.; Lee, T. Superhydrophobic, Transparent, and Stretchable 3D Hierarchical Wrinkled Film-Based Sensors for Wearable Applications. Adv. Mater. Technol. 2019, 4, 1900230. [Google Scholar] [CrossRef]
- Lin, M.Z.; Zheng, Z.J.; Yang, L.; Luo, M.S.; Fu, L.H.; Lin, B.F.; Xu, C.H. A High-Performance, Sensitive, Wearable Multifunctional Sensor Based on Rubber/CNT for Human Motion and Skin Temperature Detection. Adv. Mater. 2022, 34, 2107309. [Google Scholar] [CrossRef]
- Luo, J.C.; Huo, L.Y.; Wang, L.; Huang, X.W.; Li, J.Y.; Guo, Z.; Gao, Q.; Hu, M.J.; Xue, H.G.; Gao, J.F. Superhydrophobic and multi-responsive fabric composite with excellent electro-photo-thermal effect and electromagnetic interference shielding performance. Chem. Eng. J. 2020, 391, 123537. [Google Scholar] [CrossRef]
- Ma, T.; Ma, J.H.; Yang, C.; Zhang, J.Y.; Cheng, J. Robust, Multiresponsive, Superhydrophobic, and Oleophobic Nanocomposites via a Highly Efficient Multifluorination Strategy. ACS Appl. Mater. Interfaces 2021, 13, 28949–28961. [Google Scholar] [CrossRef]
- Park, J.; Lee, S.; Kim, D.I.; Kim, Y.Y.; Kim, S.; Kim, H.J.; Kim, Y. Evaporation-Rate Control of Water Droplets on Flexible Transparent Heater for Sensor Application. Sensors 2019, 19, 4918. [Google Scholar] [CrossRef]
- Wang, L.; Luo, J.C.; Chen, Y.; Lin, L.W.; Huang, X.W.; Xue, H.G.; Gao, J.F. Fluorine-free Superhydrophobic and Conductive Rubber Composite with Outstanding Deicing Performance for Highly Sensitive and Stretchable Strain Sensors. ACS Appl. Mater. Interfaces 2019, 11, 17774–17783. [Google Scholar] [CrossRef]
- Wang, Y.; Xia, Y.; Xiang, P.; Dai, Y.Y.; Gao, Y.; Xu, H.; Yu, J.A.; Gao, G.H.; Chen, K.X. Protein-assisted freeze-tolerant hydrogel with switchable performance toward customizable flexible sensor. Chem. Eng. J. 2022, 428, 131171. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Zang, H.; Guan, Y.; Li, S.; Liu, M. Superhydrophobic Flexible Strain Sensors Constructed Using Nanomaterials: Their Fabrications and Sustainable Applications. Nanomaterials 2023, 13, 2639. https://doi.org/10.3390/nano13192639
Zhou X, Zang H, Guan Y, Li S, Liu M. Superhydrophobic Flexible Strain Sensors Constructed Using Nanomaterials: Their Fabrications and Sustainable Applications. Nanomaterials. 2023; 13(19):2639. https://doi.org/10.3390/nano13192639
Chicago/Turabian StyleZhou, Xiaodong, Hongxin Zang, Yong Guan, Shuangjian Li, and Mingming Liu. 2023. "Superhydrophobic Flexible Strain Sensors Constructed Using Nanomaterials: Their Fabrications and Sustainable Applications" Nanomaterials 13, no. 19: 2639. https://doi.org/10.3390/nano13192639
APA StyleZhou, X., Zang, H., Guan, Y., Li, S., & Liu, M. (2023). Superhydrophobic Flexible Strain Sensors Constructed Using Nanomaterials: Their Fabrications and Sustainable Applications. Nanomaterials, 13(19), 2639. https://doi.org/10.3390/nano13192639