Novel Effective Photocatalytic Self-Cleaning Coatings: TiO2-Polyfluoroalkoxy Coatings Prepared by Suspension Plasma Spraying
Abstract
:1. Introduction
2. Experiment Methods
2.1. TiO2-PFA Suspension
2.2. Coatings Preparation
- (1)
- A stainless-steel sheet with dimensions of 20 mm × 20 mm× 2 mm was employed as the substrate and sandblasted using 46# SiO2. It was then cleaned ultrasonically with alcohol and dried using compressed air.
- (2)
- For suspension plasma spraying, an F4 plasma gun (GTV CL, WI-091) with an inner diameter of 6 mm was employed. The suspension was dispersed and stirred in real-time using a custom-made thermostatic magnetic stirring and ultrasonic vibration machine, ensuring good fluidity and stability of the suspension during the SPS spraying process (Figure 1). A peristaltic pump was utilized to convey the TiO2-PFA suspension from a 0.3 mm diameter injection port into the plasma stream at a rate of 30 mL/min. The spraying parameters are shown in Table 2. Importantly, cooling the substrate with air during the spraying process can be beneficial for the retention of anatase TiO2 and avoiding the over-firing carbonization decomposition of PFA.
2.3. Coating Characterization
2.4. Evaluation of Photocatalytic Activity
3. Results and Discussion
3.1. Coating Microstructure
3.2. Coating Composition
3.3. FT-IR Analysis of Composite Coatings
3.4. Composite Coating XPS Analysis
3.5. Effect of PFA Content on Light Absorption Performance of Coatings
3.6. Effect of PFA Content on the Photocatalytic Performance of Coatings
3.7. Effect of PFA Content on the Wettability of the Coating Surface
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fujishima, A.; Honda, K.I.; Kikuchi, S.I. Photosensitized Electrolytic Oxidation on Semiconducting n-Type TiO2 Electrode. J. Soc. Chem. Ind. Jpn. 1969, 72, 108–113. [Google Scholar]
- Zhu, C.; Wang, Y.; Jiang, Z.; Liu, A.; Pu, Y.; Xian, Q.; Zou, W.; Sun, C. Ultrafine Bi3TaO7 Nanodot-Decorated V, N Codoped TiO2 Nanoblocks for Visible-Light Photocatalytic Activity: Interfacial Effect and Mechanism Insight. ACS Appl. Mater. Inter. 2019, 11, 13011–13021. [Google Scholar] [CrossRef] [PubMed]
- Nakata, K.; Fujishima, A. TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13, 169–189. [Google Scholar] [CrossRef]
- Crick, C.R.; Bear, J.C.; Kafizas, A.; Parkin, I.P. Superhydrophobic Photocatalytic Surfaces through Direct Incorporation of Titania Nanoparticles into a Polymer Matrix by Aerosol Assisted Chemical Vapor Deposition. Adv. Mater. 2012, 24, 3505–3508. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Gan, W.; Xiao, S.; Zhan, X.; Li, J. A robust superhydrophobic antibacterial Ag–TiO2 composite film immobilized on wood substrate for photodegradation of phenol under visible-light illumination. Ceram. Int. 2016, 42, 2170–2179. [Google Scholar] [CrossRef]
- Nishimoto, S.; Becchaku, M.; Kameshima, Y.; Shirosaki, Y.; Hayakawa, S.; Osaka, A.; Miyake, M. TiO2-based superhydrophobic–superhydrophilic pattern with an extremely high wettability contrast. Thin Solid Film. 2014, 558, 221–226. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, Z.; Tuo, Y.; Wang, K.; Huang, M.; Huang, Y.; Shen, S. A transparent CNTs/TiO2 composite film with superhydrophobic and photocatalytic functions self-assembled by liquid-phase deposition. Mater. Chem. Phys. 2015, 149, 522–529. [Google Scholar] [CrossRef]
- Duan, Z.; Zhao, Z.; Luo, D.; Zhao, M.; Zhao, G. A facial approach combining photosensitive sol-gel with self-assembly method to fabricate superhydrophobic TiO2 films with patterned surface structure. Appl. Surf. Sci. A J. Devoted Prop. Interfaces Relat. Synth. Behav. Mater. 2016, 360, 1030–1035. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, S.; Salim, A.; Seeger, S. Hierarchical Structured Multifunctional Self-Cleaning Material with Durable Superhydrophobicity and Photocatalytic Functionalities. Small 2019, 15, e1901822. [Google Scholar] [CrossRef] [PubMed]
- Wooh, S.; Encinas, N.; Vollmer, D.; Butt, H.J. Stable hydrophobic metal-oxide photocatalysts via grafting polydimethylsiloxane brush. Adv. Mater. 2017, 29, 1604637. [Google Scholar] [CrossRef]
- Tian, X.; Chen, Q.; Song, L.; Wang, Y.; Li, H. Formation of alkali resistant PDMS–TiO2–SiO2 hybrid coatings. Mater. Lett. 2007, 61, 4432–4434. [Google Scholar] [CrossRef]
- Jiang, C.; Liu, W.; Yang, M.; Liu, C.; He, S.; Xie, Y.; Wang, Z. Facile fabrication of robust fluorine-free self-cleaning cotton textiles with superhydrophobicity, photocatalytic activity, and UV durability. Colloids Surf. A Physicochem. Eng. Asp. 2018, 559, 235–242. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, E.J.; Kim, D.H.; Jeong, M.G.; Kim, Y.D. Superhydrophobic surfaces with photocatalytic activity under UV and visible light irradiation. Catal. Today 2015, 260, 32–38. [Google Scholar] [CrossRef]
- Xue, C.-H.; Li, M.; Guo, X.-J.; Li, X.; An, Q.-F.; Jia, S.-T. Fabrication of superhydrophobic textiles with high water pressure resistance. Surf. Coat. Technol. 2017, 310, 134–142. [Google Scholar] [CrossRef]
- Shen, K.; Yu, M.; Li, Q.; Sun, W.; Gong, Y. Synthesis of a fluorine-free polymeric water-repellent agent for creation of superhydrophobic fabrics. Appl. Surf. Sci. 2017, 426, 694–703. [Google Scholar] [CrossRef]
- Mateus, C.; Costil, S.; Bolot, R.; Coddet, C. Ceramic/fluoropolymer composite coatings by thermal spraying—A modification of surface properties. Surf. Coat. Technol. 2005, 191, 108–118. [Google Scholar] [CrossRef]
- Robinson, B.; Tighe, C.; Gruar, R.; Mills, A.; Parkin, I.; Tabecki, A.; de Villiers Lovelock, H.; Darr, J. Suspension plasma sprayed coatings using dilute hydrothermally produced titania feedstocks for photocatalytic applications. J. Mater. Chem. A 2015, 3, 12680–12689. [Google Scholar] [CrossRef]
- Xie, S.; Song, C.; Yu, Z.; Liu, S.; Lapostolle, F.; Klein, D.; Deng, C.; Liu, M.; Liao, H. Effect of environmental pressure on the microstructure of YSZ thermal barrier coating via suspension plasma spraying. J. Eur. Ceram. Soc. 2021, 41, 535–543. [Google Scholar] [CrossRef]
- Liu, J.; Dai, M.; Wu, J.; Hu, Y.; Zhang, Q.; Cui, J.; Wang, Y.; Tan, H.H.; Wu, Y. Electrochemical hydrogenation of mixed-phase TiO2 nanotube arrays enables remarkably enhanced photoelectrochemical water splitting performance. Sci. Bull. 2018, 63, 194–202. [Google Scholar] [CrossRef]
- Khatibnezhad, H.; Ambriz-Vargas, F.; Ettouil, F.B.; Moreau, C. Role of phase content on the photocatalytic performance of TiO2 coatings deposited by suspension plasma spray. J. Eur. Ceram. Soc. 2022, 42, 2905–2920. [Google Scholar] [CrossRef]
- Saravanan, R.; Karthikeyan, S.; Gupta, V.; Sekaran, G.; Narayanan, V.; Stephen, A. Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Mater. Sci. Eng. C 2013, 33, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Tayade, R.J.; Surolia, P.K.; Kulkarni, R.G.; Jasra, R.V. Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2. Sci. Technol. Adv. Mater. 2007, 8, 455–462. [Google Scholar] [CrossRef]
- Toma, F.L.; Berger, L.M.; Jacquet, D.; Wicky, D.; Lindelov, J.S. Comparative study on the photocatalytic behaviour of titanium oxide thermal sprayed coatings from powders and suspensions. Surf. Coat. Technol. 2009, 203, 2150–2156. [Google Scholar] [CrossRef]
- Gao, S.; Liu, J.; Liu, M.; Zhang, X.; Deng, C.; Liang, X.; Pang, X. Properties and deposition mechanism of PFA/Al2O3 composite ceramic hydrophobic coatings prepared by APS. Surf. Technol. 2018, 47, 64–72. [Google Scholar]
- Yaemsunthorn, K.; Kobielusz, M.; Macyk, W. TiO2 with tunable anatase-to-rutile nanoparticles ratios: How does the photoactivity depend on the phase composition and the nature of photocatalytic reaction? ACS Appl. Nano Mater. 2021, 4, 633–643. [Google Scholar] [CrossRef]
- Chen, M.; Chen, J.; Chen, C.; Zhang, C.; He, H. Distinct photocatalytic charges separation pathway on CuOx modified rutile and anatase TiO2 under visible light. Appl. Catal. B Environ. 2022, 300, 120735. [Google Scholar] [CrossRef]
- Kim, J.R.; Kan, E. Heterogeneous photocatalytic degradation of sulfamethoxazole in water using a biochar-supported TiO2 photocatalyst. J. Environ. Manag. 2016, 180, 94–101. [Google Scholar] [CrossRef]
- Rao, V.N.; Ravi, P.; Sathish, M.; Cheralathan, K.; Neppolian, B.; Kumari, M.M.; Shankar, M. Manifestation of enhanced and durable photocatalytic H2 production using hierarchically structured Pt@ Co3O4/TiO2 ternary nanocomposite. Ceram. Int. 2021, 47, 10226–10235. [Google Scholar]
- Costil, S.; Mateus, C.; Coddet, C. Ceramic/fluoropolymer composite coatings by plasma spraying. Surf. Coat. Technol. 2006, 201, 2020–2027. [Google Scholar] [CrossRef]
- Piwowarczyk, J.; Jdrzejewski, R.; Moszyński, D.; Kwiatkowski, K.; Niemczyk, A.; Baranowska, J. XPS and FTIR Studies of Polytetrafluoroethylene Thin Films Obtained by Physical Methods. Polymers 2019, 11, 1629. [Google Scholar] [CrossRef]
- Harathi, N.; Bollu, M.; Pasupuleti, K.S.; Tauanov, Z.; Peta, K.R.; Kim, M.-D.; Reddeppa, M.; Sarkar, A.; Rao, V.N. PrGO decorated TiO2 nanoplates hybrid nanocomposite for augmented NO2 gas detection with faster gas kinetics under UV light irradiation. Sens. Actuators B Chem. 2022, 358, 131503. [Google Scholar] [CrossRef]
- Gao, M.; Li, Y.; Su, X.; Tang, Z.; Han, Z.; Zhang, Z.; Chai, W.; Zhang, W.; Zheng, Z.; Liu, Y. One-step spraying route to construct a bio-inspired, robust, multi-functional and superhydrophobic coatings with corrosion resistance, self-cleaning and anti-icing properties. Colloids Surf. A Physicochem. Eng. Asp. 2023, 676, 132225. [Google Scholar] [CrossRef]
- Khatibnezhad, H.; Sani, M.A.F. Preparation and characterization of nanostructured TiO2 thin film codoped with nitrogen and vanadium on glass surface by sol–gel dip-coating method. Res. Chem. Intermed. 2015, 41, 7349–7361. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, P.; Liu, J.; Yu, J. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys. 2014, 16, 20382–20386. [Google Scholar] [CrossRef]
- Luttrell, T.; Halpegamage, S.; Tao, J.; Kramer, A.; Sutter, E.; Batzill, M. Why is anatase a better photocatalyst than rutile?-Model studies on epitaxial TiO2 films. Sci. Rep. 2014, 4, 4043. [Google Scholar] [CrossRef]
- Toma, F.-L.; Berger, L.-M.; Shakhverdova, I.; Leupolt, B.; Potthoff, A.; Oelschlägel, K.; Meissner, T.; Gomez, J.A.I.; de Miguel, Y. Parameters influencing the photocatalytic activity of suspension-sprayed TiO 2 coatings. J. Therm. Spray Technol. 2014, 23, 1037–1053. [Google Scholar] [CrossRef]
- Xu, P.; Coyle, T.W.; Pershin, L.; Mostaghimi, J. Superhydrophobic ceramic coating: Fabrication by solution precursor plasma spray and investigation of wetting behavior. J. Colloid Interface Sci. 2018, 523, 35–44. [Google Scholar] [CrossRef]
- Wang, H.; Chen, E.; Jia, X.; Liang, L.; Wang, Q. Superhydrophobic coatings fabricated with polytetrafluoroethylene and SiO2 nanoparticles by spraying process on carbon steel surfaces. Appl. Surf. Sci. 2015, 349, 724–732. [Google Scholar] [CrossRef]
Total Mass (g) | Solid (wt.%) | Deionized Water (g) | NNO (g) | TiO2 (g) | PFA Aqueous Dispersion (g) | |
---|---|---|---|---|---|---|
0PT | 500 | 15 | 425 | 1.5 | 75 | 0 |
5PT | 500 | 15 | 416 | 1.425 | 71.25 | 7.5 |
15PT | 500 | 15 | 417 | 1.27 | 63.5 | 18.75 |
25PT | 500 | 15 | 386 | 1.125 | 56.25 | 37.5 |
Simple | Coatings |
---|---|
Ar flow/slpm | 45 |
H2 flow/slpm | 7 |
Power/kW | 27 |
Current/A | 370 |
Spraying distance/mm | 50 |
Coating | 0PT | 5PT | 15PT | 25PT |
---|---|---|---|---|
Surface roughness parameter Ra (μm) | 1.542 ± 0.5 | 2.418 ± 0.2 | 2.725 ± 0.3 | 4.966 ± 0.4 |
Sample | 0PT | 5PT | 15PT | 25PT |
---|---|---|---|---|
Phase content anatase (%) | 70 | 69 | 81 | 85 |
Bandgap | 0PT | 5PT | 15PT | 25PT |
---|---|---|---|---|
Indirect (eV) | 2.20 | 2.60 | 2.75 | 2.90 |
Direct (eV) | 3.0 | 3.30 | 3.25 | 3.20 |
Simples | Light | MB Degradation (%) | Rate Constant (min−1) | Catalytic Rate Constant (R2) |
---|---|---|---|---|
0PT | UV | 72 | 0.00305 | 0.97 |
Vis | 88 | 0.00496 | 0.98 | |
5PT | UV | 91 | 0.00552 | 0.998 |
Vis | 90 | 0.00528 | 0.98 | |
15PT | UV | 87 | 0.00475 | 0.996 |
Vis | 96 | 0.00661 | 0.96 | |
25PT | UV | 93 | 0.00553 | 0.995 |
Vis | 95 | 0.00743 | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, C.; He, J.; Cui, S.; Fan, X.; Li, S.; Yang, Y.; Tan, X.; Zhang, X.; Mao, J.; Zhang, L.; et al. Novel Effective Photocatalytic Self-Cleaning Coatings: TiO2-Polyfluoroalkoxy Coatings Prepared by Suspension Plasma Spraying. Nanomaterials 2023, 13, 3123. https://doi.org/10.3390/nano13243123
He C, He J, Cui S, Fan X, Li S, Yang Y, Tan X, Zhang X, Mao J, Zhang L, et al. Novel Effective Photocatalytic Self-Cleaning Coatings: TiO2-Polyfluoroalkoxy Coatings Prepared by Suspension Plasma Spraying. Nanomaterials. 2023; 13(24):3123. https://doi.org/10.3390/nano13243123
Chicago/Turabian StyleHe, Chunyan, Jialin He, Sainan Cui, Xiujuan Fan, Shuanjian Li, Yaqi Yang, Xi Tan, Xiaofeng Zhang, Jie Mao, Liuyan Zhang, and et al. 2023. "Novel Effective Photocatalytic Self-Cleaning Coatings: TiO2-Polyfluoroalkoxy Coatings Prepared by Suspension Plasma Spraying" Nanomaterials 13, no. 24: 3123. https://doi.org/10.3390/nano13243123
APA StyleHe, C., He, J., Cui, S., Fan, X., Li, S., Yang, Y., Tan, X., Zhang, X., Mao, J., Zhang, L., & Deng, C. (2023). Novel Effective Photocatalytic Self-Cleaning Coatings: TiO2-Polyfluoroalkoxy Coatings Prepared by Suspension Plasma Spraying. Nanomaterials, 13(24), 3123. https://doi.org/10.3390/nano13243123