Multifunctional Core/Shell Diamond Nanoparticles Combining Unique Thermal and Light Properties for Future Biological Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Fabrication of Luminescent Core/Shell Nanodiamonds (CSNDs)
2.2. Scanning Electron Microscopy, Photoluminescence, and Raman Setup
3. Results
3.1. BNDs Characterization
3.1.1. Raman Spectra
3.1.2. Absorption
3.1.3. Photoluminescence
3.2. Core/Shell NDs Characterization and Temperature Dependent Properties
3.2.1. Raman and Photoluminescence of CSNDs with BND Core and Shell Doped by SiV Centers
3.2.2. T-Dependence of ZPL Spectral Position
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, X.; Hussain, S.; Abbas, A.; Hao, Y.; Malik, A.H.; Tian, X.; Song, H.; Gao, R. Conjugated Polymer Nanoparticles and Their Nanohybrids as Smart Photoluminescent and Photoresponsive Material for Biosensing, Imaging, and Theranostics. Microchim. Acta 2022, 189, 83. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Tang, J.; Guo, S.; Zhao, Q.; Li, S. Recent Progress of Preparation Strategies in Organic Nanoparticles for Cancer Phototherapeutics. Molecules 2023, 28, 6038. [Google Scholar] [CrossRef] [PubMed]
- Vervald, A.M.; Burikov, S.A.; Scherbakov, A.M.; Kudryavtsev, O.S.; Kalyagina, N.A.; Vlasov, I.I.; Ekimov, E.A.; Dolenko, T.A. Boron-Doped Nanodiamonds as Anticancer Agents: En Route to Hyperthermia/Thermoablation Therapy. ACS Biomater. Sci. Eng. 2020, 6, 4446–4453. [Google Scholar] [CrossRef] [PubMed]
- Vervald, A.M.; Burikov, S.A.; Vlasov, I.I.; Ekimov, E.A.; Shenderova, O.A.; Dolenko, T.A. Boron-Doped Nanodiamonds as Possible Agents for Local Hyperthermia. Laser Phys. Lett. 2017, 14, 045702. [Google Scholar] [CrossRef]
- Alkahtani, M. Silicon Vacancy in Boron-Doped Nanodiamonds for Optical Temperature Sensing. Materials 2023, 16, 5942. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.-X.; Yang, X.-G.; Lv, C.-F.; Li, Y.-Z.; Liu, K.-K.; Zang, J.-H.; Yang, X.; Dong, L.; Shan, C.-X. Nanodiamonds: Synthesis, Properties, and Applications in Nanomedicine. Mater. Des. 2021, 210, 110091. [Google Scholar] [CrossRef]
- Cheng, L.-C.; Chen, H.M.; Lai, T.-C.; Chan, Y.-C.; Liu, R.-S.; Sung, J.C.; Hsiao, M.; Chen, C.-H.; Her, L.-J.; Tsai, D.P. Targeting Polymeric Fluorescent Nanodiamond-Gold/Silver Multi-Functional Nanoparticles as a Light-Transforming Hyperthermia Reagent for Cancer Cells. Nanoscale 2013, 5, 3931. [Google Scholar] [CrossRef]
- George, S.; Palantavida, S. A Plasmonic Fluorescent Ratiometric Temperature Sensor for Self-Limiting Hyperthermic Applications Utilizing FRET Enhancement in the Plasmonic Field. Analyst 2023, 148, 3918–3930. [Google Scholar] [CrossRef]
- Maziukiewicz, D.; Mrówczyński, R.; Jurga, S.; Grześkowiak, B.F. Laser Synthesized Nanodiamonds with Hyper-Branched Polyglycerol and Polydopamine for Combined Imaging and Photothermal Treatment. Diam. Relat. Mater. 2022, 128, 109308. [Google Scholar] [CrossRef]
- Zaitsev, A. Optical Properties of Diamond: A Data Handbook; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Yang, Z.; Xu, T.; Li, H.; She, M.; Chen, J.; Wang, Z.; Zhang, S.; Li, J. Zero-Dimensional Carbon Nanomaterials for Fluorescent Sensing and Imaging. Chem. Rev. 2023, 123, 11047–11136. [Google Scholar] [CrossRef]
- Liu, W.; Alam, M.N.A.; Liu, Y.; Agafonov, V.N.; Qi, H.; Koynov, K.; Davydov, V.A.; Uzbekov, R.; Kaiser, U.; Lasser, T.; et al. Silicon-Vacancy Nanodiamonds as High Performance Near-Infrared Emitters for Live-Cell Dual-Color Imaging and Thermometry. Nano Lett. 2022, 22, 2881–2888. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.-W.; Cojocaru, I.; Becker, J.; Fedotov, I.V.; Alkahtani, M.H.A.; Alajlan, A.; Blakley, S.; Rezaee, M.; Lyamkina, A.; Palyanov, Y.N.; et al. Germanium-Vacancy Color Center in Diamond as a Temperature Sensor. ACS Photonics 2018, 5, 765–770. [Google Scholar] [CrossRef]
- Blakley, S.; Liu, X.; Fedotov, I.; Cojocaru, I.; Vincent, C.; Alkahtani, M.; Becker, J.; Kieschnick, M.; Lühman, T.; Meijer, J.; et al. Fiber-Optic Quantum Thermometry with Germanium-Vacancy Centers in Diamond. ACS Photonics 2019, 6, 1690–1693. [Google Scholar] [CrossRef]
- Chen, Y.; Li, C.; Yang, T.; Ekimov, E.A.; Bradac, C.; Ha, S.T.; Toth, M.; Aharonovich, I.; Tran, T.T. Real-Time Ratiometric Optical Nanoscale Thermometry. ACS Nano 2023, 17, 2725–2736. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Agafonov, V.N.; Davydov, V.A.; Plakhotnik, T. Ultrasensitive All-Optical Thermometry Using Nanodiamonds with a High Concentration of Silicon-Vacancy Centers and Multiparametric Data Analysis. ACS Photonics 2019, 6, 1387–1392. [Google Scholar] [CrossRef]
- Golubewa, L.; Padrez, Y.; Malykhin, S.; Kulahava, T.; Shamova, E.; Timoshchenko, I.; Franckevicius, M.; Selskis, A.; Karpicz, R.; Obraztsov, A.; et al. All-Optical Thermometry with NV and SiV Color Centers in Biocompatible Diamond Microneedles. Adv. Opt. Mater. 2022, 10, 2200631. [Google Scholar] [CrossRef]
- Nguyen, C.T.; Evans, R.E.; Sipahigil, A.; Bhaskar, M.K.; Sukachev, D.D.; Agafonov, V.N.; Davydov, V.A.; Kulikova, L.F.; Jelezko, F.; Lukin, M.D. All-Optical Nanoscale Thermometry with Silicon-Vacancy Centers in Diamond. Appl. Phys. Lett. 2018, 112, 203102. [Google Scholar] [CrossRef]
- Romshin, A.M.; Zeeb, V.; Martyanov, A.K.; Kudryavtsev, O.S.; Pasternak, D.G.; Sedov, V.S.; Ralchenko, V.G.; Sinogeykin, A.G.; Vlasov, I.I. A New Approach to Precise Mapping of Local Temperature Fields in Submicrometer Aqueous Volumes. Sci. Rep. 2021, 11, 14228. [Google Scholar] [CrossRef]
- Zaghrioui, M.; Agafonov, V.N.; Davydov, V.A. Nitrogen and Group-IV (Si, Ge) Vacancy Color Centres in Nano-Diamonds: Photoluminescence Study at High Temperature (25 °C–600 °C). Mater. Res. Express 2020, 7, 015043. [Google Scholar] [CrossRef]
- Romshin, A.M.; Zeeb, V.; Glushkov, E.; Radenovic, A.; Sinogeikin, A.G.; Vlasov, I.I. Nanoscale Thermal Control of a Single Living Cell Enabled by Diamond Heater-Thermometer. Sci. Rep. 2023, 13, 8546. [Google Scholar] [CrossRef]
- Bogdanov, K.V.; Baranov, M.A.; Feoktistov, N.A.; Kaliya, I.E.; Golubev, V.G.; Grudinkin, S.A.; Baranov, A.V. Duo Emission of CVD Nanodiamonds Doped by SiV and GeV Color Centers: Effects of Growth Conditions. Materials 2022, 15, 3589. [Google Scholar] [CrossRef] [PubMed]
- Grudinkin, S.A.; Feoktistov, N.A.; Bogdanov, K.V.; Baranov, A.V.; Golubev, V.G. Effect of Boron Doping on Luminescent Properties of Silicon--Vacancy and Germanium--Vacancy Color Centers in Diamond Particles Obtained by Chemical Vapor Deposition. Phys. Solid State 2022, 64, 1506. [Google Scholar] [CrossRef]
- Trofimova, E.Y.; Aleksenskii, A.E.; Grudinkin, S.A.; Korkin, I.V.; Kurdyukov, D.A.; Golubev, V.G. Effect of Tetraethoxysilane Pretreatment on Synthesis of Colloidal Particles of Amorphous Silicon Dioxide. Colloid J. 2011, 73, 546–550. [Google Scholar] [CrossRef]
- Grudinkin, S.A.; Feoktistov, N.A.; Bogdanov, K.V.; Baranov, M.A.; Baranov, A.V.; Fedorov, A.V.; Golubev, V.G. Chemical Vapor Deposition of Isolated Spherical Diamond Particles with Embedded Silicon-Vacancy Color Centers onto the Surface of Synthetic Opal. Semiconductors 2014, 48, 268–271. [Google Scholar] [CrossRef]
- Karpov, I.A.; Samarov, E.N.; Masalov, V.M.; Bozhko, S.I.; Emel’chenko, G.A. The Intrinsic Structure of Spherical Particles of Opal. Phys. Solid State 2005, 47, 347. [Google Scholar] [CrossRef]
- Aleksenskiy, A.E.; Eydelman, E.D.; Vul, A.Y. Deagglomeration of Detonation Nanodiamonds. Nanosci. Nanotechnol. Lett. 2011, 3, 68–74. [Google Scholar] [CrossRef]
- Ager, J.W.; Walukiewicz, W.; McCluskey, M.; Plano, M.A.; Landstrass, M.I. Fano Interference of the Raman Phonon in Heavily Boron-Doped Diamond Films Grown by Chemical Vapor Deposition. Appl. Phys. Lett. 1995, 66, 616–618. [Google Scholar] [CrossRef]
- Mortet, V.; Taylor, A.; Vlčková Živcová, Z.; Machon, D.; Frank, O.; Hubík, P.; Tremouilles, D.; Kavan, L. Analysis of Heavily Boron-Doped Diamond Raman Spectrum. Diam. Relat. Mater. 2018, 88, 163–166. [Google Scholar] [CrossRef]
- Pruvost, F.; Deneuville, A. Analysis of the Fano in Diamond. Diam. Relat. Mater. 2001, 10, 531–535. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Raman Spectroscopy of Amorphous, Nanostructured, Diamond–like Carbon, and Nanodiamond. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2004, 362, 2477–2512. [Google Scholar] [CrossRef]
- Sharma, S.K.; Shrivastava, N.; Rossi, F.; Tung, L.D.; Thanh, N.T.K. Nanoparticles-Based Magnetic and Photo Induced Hyperthermia for Cancer Treatment. Nano Today 2019, 29, 100795. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grudinkin, S.A.; Bogdanov, K.V.; Tolmachev, V.A.; Baranov, M.A.; Kaliya, I.E.; Golubev, V.G.; Baranov, A.V. Multifunctional Core/Shell Diamond Nanoparticles Combining Unique Thermal and Light Properties for Future Biological Applications. Nanomaterials 2023, 13, 3124. https://doi.org/10.3390/nano13243124
Grudinkin SA, Bogdanov KV, Tolmachev VA, Baranov MA, Kaliya IE, Golubev VG, Baranov AV. Multifunctional Core/Shell Diamond Nanoparticles Combining Unique Thermal and Light Properties for Future Biological Applications. Nanomaterials. 2023; 13(24):3124. https://doi.org/10.3390/nano13243124
Chicago/Turabian StyleGrudinkin, Sergey A., Kirill V. Bogdanov, Vladimir A. Tolmachev, Mikhail A. Baranov, Ilya E. Kaliya, Valery G. Golubev, and Alexander V. Baranov. 2023. "Multifunctional Core/Shell Diamond Nanoparticles Combining Unique Thermal and Light Properties for Future Biological Applications" Nanomaterials 13, no. 24: 3124. https://doi.org/10.3390/nano13243124
APA StyleGrudinkin, S. A., Bogdanov, K. V., Tolmachev, V. A., Baranov, M. A., Kaliya, I. E., Golubev, V. G., & Baranov, A. V. (2023). Multifunctional Core/Shell Diamond Nanoparticles Combining Unique Thermal and Light Properties for Future Biological Applications. Nanomaterials, 13(24), 3124. https://doi.org/10.3390/nano13243124