Electrochemical Impedance as an Assessment Tool for the Investigation of the Physical and Mechanical Properties of Graphene-Based Cementitious Nanocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Cementitious Nanocomposites
2.2. Experimental Setup
2.2.1. Electrochemical Impedance Spectroscopy Measurements
2.2.2. Mechanical Tests
2.2.3. Porosity Measurements
Nitrogen Adsorption Study
Mercury Porosimetry
3. Results and Discussion
3.1. Electrochemical Impedance Spectroscopy
3.1.1. Nyquist Plots and Electrical Resistivity
3.1.2. Equivalent Circuit Analysis and Results Discussion
- (i)
- The volume of electrolyte-filled pores in the bulk material far from the electrodes. The higher the pore volume, the easier the passage of ions from electrode to electrode and the smaller the series (electrolyte) resistance [29].
- (ii)
- The concentration of dissolved ions in the electrolyte, which might be enhanced by oxygen groups at the filler surface; this can be ignored here since the xGnPs used had no such groups.
- (iii)
- Partial percolation of conductive filler xGnPs, forming electron pathways that extend from the electrodes’ surfaces and shorten the distance between them, causing Rs to drop. This becomes the case when agglomerates form, as is illustrated in a forthcoming figure.
3.2. Porosity Studies
3.3. Mechanical Properties
3.4. Correlationship between Electrical and Mechanical Properties
4. Conclusions
- -
- The electrical resistivity of the investigated cement mixtures exhibited a distinctive pattern. Initially, as the content of xGnPs increased (ranging from 0.05 wt.% to 0.10 wt.% by cement), the resistivity decreased. Nevertheless, for mixtures incorporating up to 0.40 wt.% xGnPs, a subsequent increase occurred, stabilizing at an intermediate constant value when compared with the reference mixture.
- -
- There was a visible trend in the reduction of pore solution resistance (Rs) as the xGnP concentration increased. This phenomenon can be attributed, in part, to the expansion of pore volume at lower xGnP concentrations and the formation of agglomerates. These agglomerates extended the electrode interface and consequently led to shorter ion pathways. Porosity measurements further substantiated the increase in total pore volume following the incorporation of xGnPs into the cement mixture.
- -
- Both EIS and porosimetry analyses provided compelling evidence of agglomerate formation, particularly when xGnP concentrations exceeded 0.10% by dry cement weight.
- -
- A functional linear relationship was observed between fracture toughness, as assessed through bending tests, and electrical resistivity, determined via EIS measurements.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Parra-Montesinos, G.J.; Reinhardt, H.W.; Naaman, A.E. High Performance Fiber Reinforced Cement Composites 6, 1st ed.; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Tian, Z.; Li, Y.; Zheng, J.; Wang, S. A state-of-the-art on self-sensing concrete: Materials, fabrication and properties. Compos. Part B Eng. 2019, 177, 107437. [Google Scholar] [CrossRef]
- Oxana, V.K.; Leticia, M.T.M.; Boris, I.K. Recent Trends of Reinforcement of Cement with Carbon Nanotubes and Fibers. In Advances in Carbon Nanostructures; Adrian, M.T.S., Sonia, A.C.C., Eds.; IntechOpen: Rijeka, Croatia, 2016; Chapter 7. [Google Scholar]
- Du, M.; Jing, H.; Gao, Y.; Su, H.; Fang, H. Carbon nanomaterials enhanced cement-based composites: Advances and challenges. Nanotechnol. Rev. 2020, 9, 115–135. [Google Scholar] [CrossRef]
- Saleem, H.; Zaidi, S.J.; Alnuaimi, N.A. Recent Advancements in the Nanomaterial Application in Concrete and Its Ecological Impact. Materials 2021, 14, 6387. [Google Scholar] [CrossRef]
- Lee, C.; Xiaoding, W.; Kysarand, J.W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef]
- Buzaglo, M.; Bar, I.P.; Varenik, M.; Shunak, L.; Pevzner, S.; Regev, O. Graphite-to-Graphene: Total Conversion. Adv. Mater. 2017, 29, 1603528. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Fal′ko, V.I.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Marconcini, P.; Macucci, M. Transport Simulation of Graphene Devices with a Generic Potential in the Presence of an Orthogonal Magnetic Field. Nanomaterials 2022, 12, 1087. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Yin, Z.; Wu, S.; Qi, X.; He, Q.; Zhang, Q.; Yan, Q.; Boey, F.; Zhang, H. Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications. Small 2011, 7, 1876–1902. [Google Scholar] [CrossRef]
- Pan, Z.; He, L.; Qiu, L.; Korayem, A.H.; Li, G.; Zhu, J.W.; Collins, F.; Li, D.; Duan, W.H.; Wang, M.C. Mechanical properties and microstructure of a graphene oxide–cement composite. Cem. Concr. Compos. 2015, 58, 140–147. [Google Scholar] [CrossRef]
- Lu, J.; Do, I.; Drzal, L.T.; Worden, R.M.; Lee, I. Nanometal-Decorated Exfoliated Graphite Nanoplatelet Based Glucose Biosensors with High Sensitivity and Fast Response. ACS Nano 2008, 2, 1825–1832. [Google Scholar] [CrossRef]
- Papanikolaou, I.; Ribeiro de Souza, L.; Litina, C.; Al-Tabbaa, A. Investigation of the dispersion of multi-layer graphene nanoplatelets in cement composites using different superplasticiser treatments. Constr. Build. Mater. 2021, 293, 123543. [Google Scholar] [CrossRef]
- Wotring, E.; Mondal, P.; Marsh, C. Characterizing the Dispersion of Graphene Nanoplatelets in Water with Water Reducing Admixture. In Proceedings of the Nanotechnology in Construction; Spring: Cham, Switzerland, 2015; pp. 141–148. [Google Scholar]
- Du, H.; Pang, S.D. Enhancement of barrier properties of cement mortar with graphene nanoplatelet. Cem. Concr. Res. 2015, 76, 10–19. [Google Scholar] [CrossRef]
- Tao, J.; Wang, X.; Wang, Z.; Zeng, Q. Graphene nanoplatelets as an effective additive to tune the microstructures and piezoresistive properties of cement-based composites. Constr. Build. Mater. 2019, 209, 665–678. [Google Scholar] [CrossRef]
- Du, H.; Pang, S.D. Dispersion and stability of graphene nanoplatelet in water and its influence on cement composites. Constr. Build. Mater. 2018, 167, 403–413. [Google Scholar] [CrossRef]
- Dela Vega, M.S.D.C.; Vasquez, M.R. Plasma-functionalized exfoliated multilayered graphene as cement reinforcement. Compos. Part B Eng. 2019, 160, 573–585. [Google Scholar] [CrossRef]
- Chougan, M.; Marotta, E.; Lamastra, F.R.; Vivio, F.; Montesperelli, G.; Ianniruberto, U.; Bianco, A. A systematic study on EN-998-2 premixed mortars modified with graphene-based materials. Constr. Build. Mater. 2019, 227, 116701. [Google Scholar] [CrossRef]
- Dalal, S.P.; Dalal, P. Experimental Investigation on Strength and Durability of Graphene Nanoengineered Concrete. Constr. Build. Mater. 2021, 276, 122236. [Google Scholar] [CrossRef]
- Jiang, Z.; Sevim, O.; Ozbulut, O.E. Mechanical properties of graphene nanoplatelets-reinforced concrete prepared with different dispersion techniques. Constr. Build. Mater. 2021, 303, 124472. [Google Scholar] [CrossRef]
- Lamastra, F.R.; Chougan, M.; Marotta, E.; Ciattini, S.; Ghaffar, S.H.; Caporali, S.; Vivio, F.; Montesperelli, G.; Ianniruberto, U.; Al-Kheetan, M.J.; et al. Toward a better understanding of multifunctional cement-based materials: The impact of graphite nanoplatelets (GNPs). Ceram. Int. 2021, 47, 20019–20031. [Google Scholar] [CrossRef]
- Metaxa, Z.S. Polycarboxylate Based Superplasticizers as Dispersant Agents for Exfoliated Graphene Nanoplatelets Reinforcing Cement Based Materials. J. Eng. Sci. Technol. Rev. 2015, 8, 1–5. [Google Scholar] [CrossRef]
- Wang, B.; Jiang, R.; Wu, Z. Investigation of the Mechanical Properties and Microstructure of Graphene Nanoplatelet-Cement Composite. Nanomater 2016, 6, 200. [Google Scholar] [CrossRef] [PubMed]
- Metaxa, Z.S. Exfoliated graphene nanoplatelet cement-based nanocomposites as piezoresistive sensors: Influence of nanoreinforcement lateral size on monitoring capability. Cienc. Tecnol. Dos Mater. 2016, 28, 73–79. [Google Scholar] [CrossRef]
- Dalla, P.T.; Dassios, K.G.; Tragazikis, I.K.; Exarchos, D.A.; Matikas, T.E. Carbon nanotubes and nanofibers as strain and damage sensors for smart cement. Mater. Today Commun. 2016, 8, 196–204. [Google Scholar] [CrossRef]
- Du, H.; Quek, S.T.; Pang, S.D. Smart Multifunctional Cement Mortar Containing Graphite Nanoplatelet; SPIE: Bellingham, WA, USA, 2013; Volume 8692. [Google Scholar]
- Al-Dahawi, A.; Sarwary, M.H.; Öztürk, O.; Yıldırım, G.; Akın, A.; Şahmaran, M.; Lachemi, M. Electrical percolation threshold of cementitious composites possessing self-sensing functionality incorporating different carbon-based materials. Smart Mater. Struct. 2016, 25, 105005. [Google Scholar] [CrossRef]
- Sun, S.; Ding, S.; Han, B.; Dong, S.; Yu, X.; Zhou, D.; Ou, J. Multi-layer graphene-engineered cementitious composites with multifunctionality/intelligence. Compos. Part B Eng. 2017, 129, 221–232. [Google Scholar] [CrossRef]
- Baomin, W.; Shuang, D. Effect and mechanism of graphene nanoplatelets on hydration reaction, mechanical properties and microstructure of cement composites. Constr. Build. Mater. 2019, 228, 116720. [Google Scholar] [CrossRef]
- Christensen, B.J.; Coverdale, R.T.; Olson, R.A.; Ford, S.J.; Garboczi, E.J.; Jennings, H.M.; Mason, T.O. Impedance Spectroscopy of Hydrating Cement-Based Materials: Measurement, Interpretation, and Application. J. Am. Ceram. Soc. 1994, 77, 2789–2804. [Google Scholar] [CrossRef]
- Xian, X.P.; Wang, Y.S.; Xing, F.; Dong, B.Q. Measuring and Modeling Analysis of Electrochemical Impedance Spectroscopy for Hydration Procedure of Cement Materials. Adv. Mater. Res. 2012, 588–589, 1033–1036. [Google Scholar] [CrossRef]
- Dotelli, G.; Mari, C.M. The evolution of cement paste hydration process by impedance spectroscopy. Mater. Sci. Eng. A 2001, 303, 54–59. [Google Scholar] [CrossRef]
- Tang, S.W.; Li, Z.J.; Chen, E.; Shao, H.Y. Impedance measurement to characterize the pore structure in Portland cement paste. Constr. Build. Mater. 2014, 51, 106–112. [Google Scholar] [CrossRef]
- Long, W.-J.; Gu, Y.-C.; Xing, F.; Khayat, K.H. Microstructure development and mechanism of hardened cement paste incorporating graphene oxide during carbonation. Cem. Concr. Compos. 2018, 94, 72–84. [Google Scholar] [CrossRef]
- Díaz, B.; Freire, L.; Merino, P.; Nóvoa, X.R.; Pérez, M.C. Impedance spectroscopy study of saturated mortar samples. Electrochim. Acta 2008, 53, 7549–7555. [Google Scholar] [CrossRef]
- Dong, B.; Qiu, Q.; Xiang, J.; Huang, C.; Xing, F.; Han, N. Study on the Carbonation Behavior of Cement Mortar by Electrochemical Impedance Spectroscopy. Materials 2014, 7, 218–231. [Google Scholar] [CrossRef]
- Kim, J.; Suryanto, B.; McCarter, W.J. Conduction, relaxation and complex impedance studies on Portland cement mortars during freezing and thawing. Cold Reg. Sci. Technol. 2019, 166, 102819. [Google Scholar] [CrossRef]
- Liu, Z.; Beaudoin, J. The permeability of cement systems to chloride ingress and related test methods. Cem. Concr. Aggreg. 2000, 22, 16–23. [Google Scholar]
- Wansom, S.; Kidner, N.J.; Woo, L.Y.; Mason, T.O. AC-impedance response of multi-walled carbon nanotube/cement composites. Cem. Concr. Compos. 2006, 28, 509–519. [Google Scholar] [CrossRef]
- Danoglidis, P.A.; Konsta-Gdoutos, M.S.; Gdoutos, E.E.; Shah, S.P. Strength, energy absorption capability and self-sensing properties of multifunctional carbon nanotube reinforced mortars. Constr. Build. Mater. 2016, 120, 265–274. [Google Scholar] [CrossRef]
- da Silva, G.F.; Martini, S.; Moraes, J.C.B.; Teles, L.K. AC impedance spectroscopy (AC-IS) analysis to characterize the effect of nanomaterials in cement-based mortars. Constr. Build. Mater. 2021, 269, 121260. [Google Scholar] [CrossRef]
- Li, W.-W.; Ji, W.-M.; Fang, G.-H.; Liu, Y.-Q.; Xing, F.; Liu, Y.-K.; Dong, B.-Q. Electrochemical impedance interpretation for the fracture toughness of carbon nanotube/cement composites. Constr. Build. Mater. 2016, 114, 499–505. [Google Scholar] [CrossRef]
- ASTM C305; Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency. ASTM International: West Conshohocken, PA, USA, 2012.
- Bondarenko, A.S.; Ragoisha, G.A. Inverse Problem in Potentiodynamic Electrochemical Impedance Spectroscopy. Electrochim. Acta 2005, 50, 89–102. [Google Scholar] [CrossRef]
- McCarter, W.J.; Garvin, S.; Bouzid, N. Impedance measurements on cement paste. J. Mater. Sci. Lett. 1988, 7, 1056–1057. [Google Scholar] [CrossRef]
- ASTM E399; Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2012.
- Haul, R.S.J.; Gregg, K.S.W. Berichte der Bunsengesellschaft für physikalische Chemie. In Sing: Adsorption, Surface Area and Porosity; Academic Press: London, UK, 1982; Volume 86, p. 957. [Google Scholar] [CrossRef]
- Washburn, E.W. Note on a Method of Determining the Distribution of Pore Sizes in a Porous Material. Proc. Natl. Acad. Sci. USA 1921, 7, 115–116. [Google Scholar] [CrossRef] [PubMed]
- Cook, R.A.; Hover, K.C. Experiments on the contact angle between mercury and hardened cement paste. Cem. Concr. Res. 1991, 21, 1165–1175. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
Materials | ||||
---|---|---|---|---|
Mixture | CEM I | Water | xGnPs | SP |
(g) | (g) | (g) | (g) | |
M-0.00 | 380 | 114 | 0.0 | - |
M-0.05 | 380 | 114 | 0.19 | 1.52 |
M-0.10 | 380 | 114 | 0.38 | 3.04 |
M-0.20 | 380 | 114 | 0.76 | 6.08 |
M-0.40 | 380 | 114 | 1.52 | 13.16 |
Mixture | Mercury Porosimetry | N2 Porosimetry | |||||||
---|---|---|---|---|---|---|---|---|---|
ε (%) | Density (g/cm3) | Pore Volume (cm3/g) | s.s.a 1 (m2/g) | Pore Radius (nm) | Pore Volume (cm3/g) | Pore Radius (nm) | s.s.a (BET) (m2/g) | ||
Bulk | Apparent | ||||||||
M-0.00 | 4 | 2.14 | 2.23 | 0.0187 | 6.078 | 4–3665 | 33.50 | 4–200 | 10.08 |
M-0.05 | 18 | 2.13 | 2.60 | 0.0846 | 34.68 | 4–2655 | 45.50 | 4–200 | 7.60 |
M-0.10 | 18 | 2.09 | 2.54 | 0.0865 | 39.18 | 4–3270 | 46.95 | 4–200 | 8.85 |
M-0.20 | 12 | 2.12 | 2.44 | 0.0606 | 27.98 | 4–2730 | 55.35 | 4–200 | 14.04 |
M-0.40 | 16 | 2.09 | 2.50 | 0.0771 | 30.46 | 4–2690 | 52.30 | 4–200 | 11.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tziviloglou, E.; Metaxa, Z.S.; Maistros, G.; Kourkoulis, S.K.; Karousos, D.S.; Favvas, E.P.; Alexopoulos, N.D. Electrochemical Impedance as an Assessment Tool for the Investigation of the Physical and Mechanical Properties of Graphene-Based Cementitious Nanocomposites. Nanomaterials 2023, 13, 2652. https://doi.org/10.3390/nano13192652
Tziviloglou E, Metaxa ZS, Maistros G, Kourkoulis SK, Karousos DS, Favvas EP, Alexopoulos ND. Electrochemical Impedance as an Assessment Tool for the Investigation of the Physical and Mechanical Properties of Graphene-Based Cementitious Nanocomposites. Nanomaterials. 2023; 13(19):2652. https://doi.org/10.3390/nano13192652
Chicago/Turabian StyleTziviloglou, Eirini, Zoi S. Metaxa, George Maistros, Stavros K. Kourkoulis, Dionysios S. Karousos, Evangelos P. Favvas, and Nikolaos D. Alexopoulos. 2023. "Electrochemical Impedance as an Assessment Tool for the Investigation of the Physical and Mechanical Properties of Graphene-Based Cementitious Nanocomposites" Nanomaterials 13, no. 19: 2652. https://doi.org/10.3390/nano13192652
APA StyleTziviloglou, E., Metaxa, Z. S., Maistros, G., Kourkoulis, S. K., Karousos, D. S., Favvas, E. P., & Alexopoulos, N. D. (2023). Electrochemical Impedance as an Assessment Tool for the Investigation of the Physical and Mechanical Properties of Graphene-Based Cementitious Nanocomposites. Nanomaterials, 13(19), 2652. https://doi.org/10.3390/nano13192652