Ionizing Radiation Sensing with Functionalized and Copper-Coated SWCNT/PMMA Thin Film Nanocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials for the Fabrication of the Nanocomposite
2.2. Fourier Transform-Infrared (FTIR) Spectroscopy
2.3. Functionalized SWCNT/PMMA Nanocomposite Thin Film Preparation Method
3. Experimental Setup
4. Results
4.1. Dose Rate Response
4.2. Thermal Treatment and Reset
4.3. Steps towards a Practical Radiation Detection Instrument
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Avouris, P.; Appenzeller, J.; Martel, R.; Wind, S.J. Carbon Nanotube Electronics. Proc. IEEE 2003, 91, 1772–1784. [Google Scholar] [CrossRef]
- Anantram, M.P.; Léonard, F. Physics of carbon nanotube electronic devices. Rep. Prog. Phys. 2006, 69, 3507–3561. [Google Scholar] [CrossRef]
- Li, C.; Thostenson, E.; Chou, T.-W. Sensors and actuators based on carbon nanotubes and their composites: A review. Compos. Sci. Technol. 2008, 68, 1227–1249. [Google Scholar] [CrossRef]
- Sinha, N.; Ma, J.; Yeow, J.T.W. Carbon nanotube-based sensors. J. Nanosci. Technol. 2006, 6, 573–590. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, Y.; Xie, G.; Du, X.; Tai, H. Gas sensors based on multiple-walled carbon nanotubes-polyethylene oxide films for toluene vapor detection. Sens. Actuators B Chem. 2014, 191, 24–30. [Google Scholar] [CrossRef]
- Krasheninnikov, A.V.; Nordlund, K.; Sirviö, M.; Salonen, E.; Keinonen, J. Formation of ion-irradiation-induced atomic-scale defects on walls of carbon nanotubes. Phys. Rev. B 2001, 63, 245405. [Google Scholar] [CrossRef]
- Zhao, J.; Park, H.; Han, J.; Lu, J.P. Electronic Properties of Carbon Nanotubes with Covalent Sidewall Functionalization. J. Phys. Chem. B 2004, 108, 4227–4230. [Google Scholar] [CrossRef]
- Malekie, S.; Ziaie, F.; Esmaeli, A. Study on dosimetry characteristics of polymer-CNT nanocomposite: Effect of polymer matrix. Nucl. Instrum. Methods Phys. Res. A Accel. Spectrometers Detect. Assoc. Equip. 2016, 816, 101–105. [Google Scholar] [CrossRef]
- Nie, Q.; Zhang, W.; Wang, L.; Guo, Z.; Li, C.; Yao, J.; Li, M.; Wu, D.; Zhou, L. Sensitivity enhanced, stability improved ethanol gas sensor based on multi-wall carbon nanotubes functionalized with Pt-Pd nanoparticles. Sens. Actuators B Chem. 2018, 270, 140–148. [Google Scholar] [CrossRef]
- Camilli, L.; Passacantando, M. Advances on Sensors Based on Carbon Nanotubes. Chemosensors 2018, 6, 62. [Google Scholar] [CrossRef]
- Han, T.; Nag, A.; Mukhopadhyay, S.C.; Xu, Y. Carbon nanotubes and its gas-sensing applications: A review. Sens. Actuators A Phys. 2019, 291, 107–143. [Google Scholar] [CrossRef]
- Malekie, S.; Ziaie, F.; Feizi, S.; Esmaeli, A. Dosimetry characteristics of HDPE-SWCNT nanocomposite for real-time application. Nucl. Instrum. Methods Phys. Res. A Accel. Spectrometers Detect. Assoc. Equip. 2016, 833, 127–133. [Google Scholar] [CrossRef]
- Zhang, W.D.; Zhang, W.-H. Carbon nanotubes as active components for gas sensors. J. Sens. Apr. 2009, 2009, 160698. [Google Scholar] [CrossRef]
- Mosayebi, A.; Malekie, S.; Rahimi, A.; Ziaie, F. Experimental study on polystyrene-MWCNT nanocomposite as a radiation Dosimeter. Radiat. Phys. Chem. 2019, 164, 108362. [Google Scholar] [CrossRef]
- Ribeiro, M.S.; Pascoini, A.L.; Knupp, W.G.; Camps, I. Effects of surface functionalization on the electronic and structural properties of carbon nanotubes: A computational approach. Appl. Surf. Sci. 2017, 426, 781–787. [Google Scholar] [CrossRef]
- Ziegler, D.; Bekyarova, E.; Marchisio, A.; Tulliani, J.M.; Naishadham, K. Highly selective ozone sensors based on functionalized carbon nanotubes. In Proceedings of the 2018 IEEE SENSORS, New Delhi, India, 28–31 October 2018; pp. 1–4. [Google Scholar]
- Kozlovskiy, A.L.; Zdorovets, M.V. Synthesis, structural, strength and corrosion properties of thin films of the type CuX (X = Bi, Mg, Ni). J. Mater. Sci. Mater. Electron. 2019, 30, 11819–11832. [Google Scholar] [CrossRef]
- Kotelnikova, A.; Zubar, T.; Vershinina, T.; Panasyuk, M.; Kanafyev, O.; Fedkin, V.; Kubasov, I.; Trukhanov, A.; Trukhanov, S.; Tishkevich, D.; et al. The influence of saccharin adsorption on NiFe alloy film growth mechanisms during electrodeposition. RSC Adv. 2022, 12, 35722–35729. [Google Scholar] [CrossRef]
- Trukhanov, A.V.; Panina, L.V.; Trukhanov, S.V.; Kostishyn, V.G.; Turchenko, V.A.; Vinnik, D.A.; Trukhanova, E.L. Critical influence of different diamagnetic ions on electromagnetic properties of BaFe12O19. Ceram. Int. 2018, 44, 13520–13529. [Google Scholar] [CrossRef]
- Kozlovskiy, A.; Egizbek, K.; Zdorovets, M.V.; Ibragimova, M.; Shumskaya, A.; Rogachev, A.A.; Ignatovich, V.Z.; Kadyrzhanov, K. Evaluation of the efficiency of detection and capture of manganese in aqueous solutions of FeCeOx nanocomposites doped with Nb2O5. Sensors 2020, 20, 4851. [Google Scholar] [CrossRef]
- Medvedev, N.; Chalupský, J.; Juha, L. Microscopic Kinetics in Poly(Methyl Methacrylate) Exposed to a Single Ultra-Short XUV/X-ray Laser Pulse. Molecules 2021, 26, 6701. [Google Scholar] [CrossRef]
- Zhao, J.; Song, M. A computer simulation of stress transfer in carbon nanotube/polymer nanocomposites. Compos. Part B Eng. 2019, 163, 236–242. [Google Scholar] [CrossRef]
- Shlimas, D.I.; Kozlovskiy, A.L.; Zdorovets, M.V. Study of the formation effect of the cubic phase of LiTiO2 on the structural, optical, and mechanical properties of Li2±x Ti1±xO3 ceramics with different contents of the X component. J. Mater. Sci. Mater. Electron. 2021, 32, 7410–7422. [Google Scholar] [CrossRef]
- Harmon, J.P.; Muisener, P.A.O.; Clayton, L.; D’Angelo, J.; Sikder, A.K.; Kumar, A.; Meyyappan, M.; Cassell, A.M. Ionizing radiation effects on interfaces in carbon nanotube-polymer composites. MRS Online Proc. Library (OPL) 2001, 697, 97. [Google Scholar] [CrossRef]
- Kalakonda, P.; Banne, S. Thermomechanical properties of PMMA and modified SWCNT composites. Nanotechnol. Sci. Appl. 2017, 10, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Kyatsandra, S.; Wilkins, R. Total Ionizing Dose X-ray Radiation Effects on MWCNT/PMMA thin film Composites. IEEE Trans. Nanotechnol. 2015, 14, 152–158. [Google Scholar] [CrossRef]
- Kyatsandra, S.; Pulikkathara, M.; Wilkins, R. X-ray radiation effects on thin film nanocomposites of functionalized and copper-coated multi-walled carbon nanotube and poly(methyl methacrylate). Surf. Interfaces 2019, 17, 100362. [Google Scholar] [CrossRef]
- Boul, P.J.; Turner, K.; Li, J.; Pulikkathara, M.X.; Dwivedi, R.C.; Sosa, E.D.; Lu, Y.; Kuznetsov, O.V.; Moloney, P.; Wilkins, R.; et al. Single-wall carbon nanotube response to proton radiation. J. Phys. Chem. C 2009, 113, 14467–14473. [Google Scholar] [CrossRef]
- Suman, G.; Pulikkathara, M.; Wilkins, R. X-ray Radiation Effects on SWCNT/PMMA Thin Film Nanocomposite. IEEE Trans. Nanotechnol. 2021, 20, 517–524. [Google Scholar] [CrossRef]
- Du, F.; Fisher, J.E.; Winey, K.I. Coagulation Method for Preparing Single-Walled Carbon Nanotube/Poly(methyl methacrylate) Composites and Their Modulus, Electrical Conductivity, and Thermal Stability. J. Polym. Sci. Part B Polym. Phys. 2003, 41, 3333–3338. [Google Scholar] [CrossRef]
- Placido, A.J. Characterization of Poly (Methyl Methacrylate) Based Nanocomposites Enhanced with Carbon Nanotubes. Ph.D. Thesis, University of Kentucky, Lexington, KY, USA, 2010. [Google Scholar]
- Mark, J.E. Poly (methyl methacrylate). In Polymer Data Handbook, 1st ed.; Oxford University Press: New York, NY, USA, 1999; pp. 655–657. [Google Scholar]
- Smith, W.F.; Javad, H. Polymeric Materials. In Foundations of Materials Science and Engineering, 4th ed.; McGraw-Hill: New York, NY, USA, 2005; p. 510. [Google Scholar]
- Iqbal, S.; Rafique, M.S.; Anjum, S.; Hayat, A.; Iqbal, N. Impact of X-ray irradiation on PMMA thin films. Appl. Surf. Sci. 2012, 259, 853–860. [Google Scholar] [CrossRef]
- Structure Determination—Mass Spectrometry and Infrared Spectroscopy. Available online: :https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Organic_Chemistry_(Morsch_et_al.)/12%3A_Structure_Determina-tion_Mass_Spectrometry_and_Infrared_Spectroscopy/12.08%3A_Infrared_Spectra_of_Some_Common_Functional_Groups (accessed on 7 January 2023).
- Janssen, J.; Lameta, M.; White, P.; Byagowi, A. Carbon Nanotube-Based Electrochemical Biosensor for Label-Free Protein Detection. Biosensors 2019, 9, 144. [Google Scholar] [CrossRef]
- Andrews, J.B.; Cardenas, J.A.; Lim, C.J.; Noyce, S.J.; Mullett, J.; Franklin, A.D. Fully Printed and Flexible Carbon Nanotube Transistors for Pressure Sensing in Automobile Tires. IEEE Sens. 2018, 18, 7875–7880. [Google Scholar] [CrossRef]
- Introduction to Arduino Nano. Available online: https://www.theengineeringprojects.com/2018/06/introduction-to-Arduino-nano.html (accessed on 22 October 2010).
- DHT11 Humidity & Temperature Sensor. Available online: https://www.circuitbasics.com/how-to-set-up-the-dht11-humidity-sensor-on-an-Arduino/ (accessed on 18 March 2021).
- Zhang, E.X.; Newaz, A.K.M.; Wang, B.; Bhandaru, S.; Zhang, C.X.; Fleetwood, D.M.; Bolotin, K.I.; Pantelides, S.T.; Alles, M.L.; Schrimpf, R.D.; et al. Low-energy X-ray, and ozone-exposure induced defect formation in graphene materials and devices. IEEE Trans. Nucl. Sci. 2011, 58, 2961–2967. [Google Scholar] [CrossRef]
- Childres, I.; Jauregui, L.A.; Foxe, M.; Tian, J.; Jalilian, R.; Jovanovic, I.; Chen, Y.P. Effect of electron-beam irradiation on graphene field-effect devices. Appl. Phys. Lett. 2010, 97, 1731091–1731093. [Google Scholar] [CrossRef]
- Raja, P.M.; Esquenazi, G.L.; Jones, D.R.; Li, J.; Brinson, B.E.; Wright, K.; Gowenlock, C.E.; Barron, A.R. Electroless deposition of Cu-SWCNT composites. C-J. Carbon Res. 2019, 5, 61. [Google Scholar] [CrossRef]
- Trukhanov, S.V.; Trukhanov, A.V.; Vasiliev, A.N.; Balagurov, A.M.; Szymczak, H. Magnetic state of the structural separated anion-deficient La0.70Sr0.30MnO2.85 manganite. J. Exp. Theor. Phys. 2011, 113, 819–825. [Google Scholar] [CrossRef]
- Korobeinichev, O.P.; Paletsky, A.A.; Gonchikzhapov, M.B.; Glaznev, R.K.; Gerasimov, I.E.; Naganovsky, Y.K.; Shundrina, I.K.; Snegirev, A.Y.; Vinu, R. Kinetics of thermal decomposition of PMMA at different heating rates and in a wide temperature range. Thermochim. Acta 2019, 671, 17–25. [Google Scholar] [CrossRef]
- Dickens, B.; Martin, J.W.; Waksman, D. Thermal and photolytic degradation of plates of poly (methyl methacrylate) containing monomer. Polymer 1984, 25, 706–715. [Google Scholar] [CrossRef]
- Guldi, D.M.; Marcaccio, M.; Paolucci, D.; Francesco Paolucci, F.; Tagmatarchis, N.; Tasis, D.; Vaquez, E.; Prato, M. Single-Wall Carbon Nanotube–Ferrocene Nanohybrids: Observing Intramolecular Electron Transfer in Functionalized SWNTs. A J. Ger. Chem. Soc. 2003, 115, 4338–4341. [Google Scholar]
Devices | Initial Resistance (kΩ) | Change in Resistance (%) |
---|---|---|
Ferrocene-SWCNT/PMMA | 3.316 ± 1.69 | (−)10 ± 3.32 |
Copper-coated-SWCNT/PMMA | 1.636 ± 1.30 | (−)4.7 ± 2.80 |
COOH-SWCNT/PMMA | 2.576 ± 1.25 | (−)4.5 ± 2.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suman, G.; Pulikkathara, M.; Wilkins, R.; Treadwell, L.J. Ionizing Radiation Sensing with Functionalized and Copper-Coated SWCNT/PMMA Thin Film Nanocomposites. Nanomaterials 2023, 13, 2653. https://doi.org/10.3390/nano13192653
Suman G, Pulikkathara M, Wilkins R, Treadwell LJ. Ionizing Radiation Sensing with Functionalized and Copper-Coated SWCNT/PMMA Thin Film Nanocomposites. Nanomaterials. 2023; 13(19):2653. https://doi.org/10.3390/nano13192653
Chicago/Turabian StyleSuman, Guddi, Merlyn Pulikkathara, Richard Wilkins, and LaRico J. Treadwell. 2023. "Ionizing Radiation Sensing with Functionalized and Copper-Coated SWCNT/PMMA Thin Film Nanocomposites" Nanomaterials 13, no. 19: 2653. https://doi.org/10.3390/nano13192653
APA StyleSuman, G., Pulikkathara, M., Wilkins, R., & Treadwell, L. J. (2023). Ionizing Radiation Sensing with Functionalized and Copper-Coated SWCNT/PMMA Thin Film Nanocomposites. Nanomaterials, 13(19), 2653. https://doi.org/10.3390/nano13192653