Evaluation of the Rheological Behavior and the Development of Performance Equations of Asphalt Composites Produced with Titanium Dioxide and Zinc Oxide Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- nano-TiO2: predominantly consisting of titanium and oxygen, also containing copper ≤ 3 ppmv, cadmium ≤ 8 ppmv, manganese ≤ 5 ppmv, lead ≤ 9 ppmv and arsenic ≤ 5 ppmv (Energy-Dispersive X-ray Spectroscopy); purity of 99%; ellipsoidal and spherical shape (Figure 1A); average size of individual particles of 29.3 ± 10.6 nm; specific surface area of 60 m2/g; density of 3.9 (20 °C); and pH between 5.5 and 5.7.
- nano-ZnO: predominantly consisting of zinc and oxygen, also containing copper ≤ 3 ppmv; cadmium ≤ 8 ppmv; manganese ≤ 5 ppmv; lead ≤ 9 ppmv and arsenic ≤ 5 ppmv (Energy-Dispersive X-ray Spectroscopy); purity of 99%; spherical shape (Figure 1B); average size of individual particles of 31.3 ± 8.7 nm; specific surface area of 40 m2/g; density of 5.6 (20 °C); and pH between 6.5 and 7.5.
2.2. Methods
2.2.1. Evaluation of the Influence of Nanoparticles on Rheological Parameters Indicative of Resistance to Permanent Deformation of the Asphalt Matrix
- An equation for TiO2 and another for ZnO for predicting parameter |G*|/sin δ of the conventional aged binder (RTFOT) as a function of temperature and percentage of nano incorporation. The equations allow the classifying of the conventional binder with TiO2 or ZnO nanoparticles in relation to the High Temperature Performance Grade (PGH).
- An equation for TiO2 and another for ZnO for predicting the non-recoverable creep compliance (Jnr3,2) of the conventional aged binder (RTFOT) as a function of temperature and percentage of nano incorporation. The equations allow the classifying of the conventional binder with TiO2 or ZnO nanoparticles in relation to the traffic level, proposed by AASHTO M 332 [48].
- An equation for TiO2 and another for ZnO for predicting the influence of nanoparticles on the conventional binder Aging Index (AI) as a function of temperature and percentage of nano incorporation.
2.2.2. Performance of Composites Regarding Fatigue Damage Tolerance
3. Results and Discussion
3.1. Evaluation of the Influence of Nanoparticles on Rheological Parameters Indicative of Resistance to Permanent Deformation of the Asphalt Matrix
3.2. Performance of Composites Regarding Fatigue Damage Tolerance
4. Conclusions
- The increase in the nano-TiO2 and nano-ZnO content in the asphalt matrix results in the improvement of rheological parameters related to performance at high temperatures, specifically parameter |G*|/sin δ and the non-recoverable creep compliance at a stress of 3.2 kPa. This indicates a potential gain in resistance to permanent deformation of the asphalt material;
- With the incorporation of nanoparticles, the porosity of the conventional asphalt binder was filled due to the reduced dimensions of nanoparticles (TiO2 and ZnO), which increased impermeability and reduced the effects of oxidation and volatilization, reflecting in the reduction of the Aging Index values;
- In terms of fatigue resistance, when compared to the pure asphalt binder, both composites show increase in the number of cycles until failure at low deformation amplitudes (up to 7.5% for binders with nano-TiO2 and up to 3.1% for binders with nano-ZnO). On the other hand, at high deformation amplitudes, the opposite was observed. This behavior is intensified as the nanoparticle content increases. This points to an increase in sensitivity to the deformation level;
- In the comparison between composites, the binder modified with nano-TiO2 presents a higher number of cycles during the assessment of the fatigue damage tolerance, whereas the binder with nano-ZnO indicates better mechanical and rheological response at high temperatures; and
- It was possible to define mathematical performance equations for each rheological parameter, providing a perspective for predicting the behavior of conventional asphalt binders (PG 58-XX) when modified with nano-TiO2 or nano-ZnO.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Rosso, L.T.; Staub de Melo, J.V. Impact of Incorporating Recycled Glass on the Photocatalytic Capacity of Paving Concrete Blocks. Constr. Build. Mater. 2020, 259, 119778. [Google Scholar] [CrossRef]
- Trujillo-Valladolid, M.; Alcántar-Vázquez, B.; Ramírez-Zamora, R.-M.; Ossa-López, A. Influence of Aging on the Physicochemical Behavior of Photocatalytic Asphalt Cements Subjected to the Natural Environment. Constr. Build. Mater. 2021, 295, 123597. [Google Scholar] [CrossRef]
- Xu, X.; Guo, H.; Wang, X.; Zhang, M.; Wang, Z.; Yang, B. Physical Properties and Anti-Aging Characteristics of Asphalt Modified with Nano-Zinc Oxide Powder. Constr. Build. Mater. 2019, 224, 732–742. [Google Scholar] [CrossRef]
- Günay, T.; Ahmedzade, P. Physical and Rheological Properties of Nano-TiO2 and Nanocomposite Modified Bitumens. Constr. Build. Mater. 2020, 243, 118208. [Google Scholar] [CrossRef]
- Bica, B.O.; de Melo, J.V.S. Concrete Blocks Nano-Modified with Zinc Oxide (ZnO) for Photocatalytic Paving: Performance Comparison with Titanium Dioxide (TiO2). Constr. Build. Mater. 2020, 252, 119120. [Google Scholar] [CrossRef]
- Cao, X.; Yang, X.; Li, H.; Huang, W.; Liu, X. Investigation of Ce-TiO2 Photocatalyst and Its Application in Asphalt-Based Specimens for NO Degradation. Constr. Build. Mater. 2017, 148, 824–832. [Google Scholar] [CrossRef]
- Hu, Z.; Xu, T.; Liu, P.; Oeser, M. Developed Photocatalytic Asphalt Mixture of Open Graded Friction Course for Degrading Vehicle Exhaust. J. Clean. Prod. 2021, 279, 123453. [Google Scholar] [CrossRef]
- Sha, A.; Liu, Z.; Jiang, W.; Qi, L.; Hu, L.; Jiao, W.; Barbieri, D.M. Advances and Development Trends in Eco-Friendly Pavements. J. Road Eng. 2021, 1, 1–42. [Google Scholar] [CrossRef]
- Cadorin, N.D.; de Melo, J.V.S.; Broering, W.B.; Manfro, A.L.; Barra, B.S. Asphalt Nanocomposite with Titanium Dioxide: Mechanical, Rheological and Photoactivity Performance. Constr. Build. Mater. 2021, 289, 123178. [Google Scholar] [CrossRef]
- Ziari, H.; Amini, A.; Goli, A. The Effect of Different Aging Conditions and Strain Levels on Relationship between Fatigue Life of Asphalt Binders and Mixtures. Constr. Build. Mater. 2020, 244, 118345. [Google Scholar] [CrossRef]
- Qian, G.; Yu, H.; Gong, X.; Zhao, L. Impact of Nano-TiO2 on the NO2 Degradation and Rheological Performance of Asphalt Pavement. Constr. Build. Mater. 2019, 218, 53–63. [Google Scholar] [CrossRef]
- da Rocha Segundo, I.G.; Landi, S., Jr.; Oliveira, S.M.B.; de Freitas, E.F.; Carneiro, J.A.O. Photocatalytic Asphalt Mixtures: Mechanical Performance and Impacts of Traffic and Weathering Abrasion on Photocatalytic Efficiency. Catal. Today 2019, 326, 94–100. [Google Scholar] [CrossRef]
- Ameli, A.; Hossein Pakshir, A.; Babagoli, R.; Norouzi, N.; Nasr, D.; Davoudinezhad, S. Experimental Investigation of the Influence of Nano TiO2 on Rheological Properties of Binders and Performance of Stone Matrix Asphalt Mixtures Containing Steel Slag Aggregate. Constr. Build. Mater. 2020, 265, 120750. [Google Scholar] [CrossRef]
- Shafabakhsh, G.H.; Ani, O.J. Experimental Investigation of Effect of Nano TiO2/SiO2 Modified Bitumen on the Rutting and Fatigue Performance of Asphalt Mixtures Containing Steel Slag Aggregates. Constr. Build. Mater. 2015, 98, 692–702. [Google Scholar] [CrossRef]
- Shafabakhsh, G.; Mirabdolazimi, S.M.; Sadeghnejad, M. Evaluation the Effect of Nano-TiO2 on the Rutting and Fatigue Behavior of Asphalt Mixtures. Constr. Build. Mater. 2014, 54, 566–571. [Google Scholar] [CrossRef]
- Nazari, H.; Naderi, K.; Moghadas Nejad, F. Improving Aging Resistance and Fatigue Performance of Asphalt Binders Using Inorganic Nanoparticles. Constr. Build. Mater. 2018, 170, 591–602. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, Y.; Guo, G.; Zhao, B.; Yu, J. Effects of ZnO Particle Size on Properties of Asphalt and Asphalt Mixture. Constr. Build. Mater. 2018, 159, 578–586. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, Z.; Li, L. Effect of Nanozinc Oxide and Organic Expanded Vermiculite Compound on Antiaging Properties of SBR Modified Bitumen. J. Mater. Civ. Eng. 2017, 29, 04017204. [Google Scholar] [CrossRef]
- Duan, H.; Long, J.; Zhang, H.; Luo, H.; Cao, J. Effects of Different Carriers for Zinc Oxide (ZnO) Particles on Microstructure of ZnO/Layered Silicate Composite and Aging Resistance of Composite Modified Asphalt. Constr. Build. Mater. 2022, 349, 128773. [Google Scholar] [CrossRef]
- Su, M.; Si, C.; Zhang, Z.; Zhang, H. Molecular Dynamics Study on Influence of Nano-ZnO/SBS on Physical Properties and Molecular Structure of Asphalt Binder. Fuel 2020, 263, 116777. [Google Scholar] [CrossRef]
- Xie, X.; Hui, T.; Luo, Y.; Li, H.; Li, G.; Wang, Z. Research on the Properties of Low Temperature and Anti-UV of Asphalt with Nano-ZnO/Nano-TiO2/Copolymer SBS Composite Modified in High-Altitude Areas. Adv. Mater. Sci. Eng. 2020, 2020, 1–15. [Google Scholar] [CrossRef]
- Hamedi, G.H.; Nejad, F.M.; Oveisi, K. Estimating the Moisture Damage of Asphalt Mixture Modified with Nano Zinc Oxide. Mater. Struct. 2016, 49, 1165–1174. [Google Scholar] [CrossRef]
- Yadykova, A.Y.; Ilyin, S.O. Rheological and Adhesive Properties of Nanocomposite Bitumen Binders Based on Hydrophilic or Hydrophobic Silica and Modified with Bio-Oil. Constr. Build. Mater. 2022, 342, 127946. [Google Scholar] [CrossRef]
- Yadykova, A.Y.; Ilyin, S.O. Bitumen Improvement with Bio-Oil and Natural or Organomodified Montmorillonite: Structure, Rheology, and Adhesion of Composite Asphalt Binders. Constr. Build. Mater. 2023, 364, 129919. [Google Scholar] [CrossRef]
- Rocha Segundo, I.; Ferreira, C.; Freitas, E.F.; Carneiro, J.O.; Fernandes, F.; Júnior, S.L.; Costa, M.F. Assessment of Photocatalytic, Superhydrophobic and Self-Cleaning Properties on Hot Mix Asphalts Coated with TiO2 and/or ZnO Aqueous Solutions. Constr. Build. Mater. 2018, 166, 500–509. [Google Scholar] [CrossRef] [Green Version]
- ASTM. D6373; Standard Specification for Performance Graded Asphalt Binder, American Association of State Highway and Transportation. ASTM: West Conshohocken, PA, USA, 2016.
- ABNT. NBR 6576; Materiais Asfálticos—Determinação Da Penetração, Associação Brasileira de Normas Técnicas. ABNT: Rio de Janeiro, Brazil, 2017.
- ABNT. NBR 6560; Ligantes Asfálticos—Determinação Do Ponto de Amolecimento—Método Do Anel e Bola, Associação Brasileira de Normas Técnicas. ABNT: Rio de Janeiro, Brazil, 2016.
- ASTM. D4402/D4402M; Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer, American Association of State Highway and Transportation. ASTM: West Conshohocken, PA, USA, 2015.
- ABNT. NBR 11341; Derivados de Petróleo—Determinação Dos Pontos de Fulgor e de Combustão Em Vaso Aberto Cleveland, Associação Brasileira de Normas Técnicas. ABNT: Rio de Janeiro, Brazil, 2015.
- ABNT. NBR 6296; Produtos Betuminosos Semissólidos—Determinação Da Massa Específica e Densidade Relativa, Associação Brasileira de Normas Técnicas. ABNT: Rio de Janeiro, Brazil, 2012.
- Hunter, R.N.; Self, A.; Read, J. The Shell Bitumen Handbook, 6th ed.; ICE Publishing: Londres, UK, 2015. [Google Scholar] [CrossRef]
- Ennaceri, H.; Boujnah, M.; Taleb, A.; Khaldoun, A.; Sáez-Araoz, R.; Ennaoui, A.; El Kenz, A.; Benyoussef, A. Thickness Effect on the Optical Properties of TiO2-Anatase Thin Films Prepared by Ultrasonic Spray Pyrolysis: Experimental and Ab Initio Study. Int. J. Hydrogen Energy 2017, 42, 19467–19480. [Google Scholar] [CrossRef]
- Castro-Beltrán, A.; Luque, P.A.; Garrafa-Gálvez, H.E.; Vargas-Ortiz, R.A.; Hurtado-Macías, A.; Olivas, A.; Almaral-Sánchez, J.L.; Alvarado-Beltrán, C.G. Titanium Butoxide Molar Ratio Effect in the TiO2 Nanoparticles Size and Methylene Blue Degradation. Optik (Stuttg) 2018, 157, 890–894. [Google Scholar] [CrossRef]
- Fernández-Arroyo, A.; Lara, M.A.; Domine, M.E.; Sayagués, M.J.; Navío, J.A.; Hidalgo, M.C. High {0 0 1} Faceted TiO2 Nanoparticles for the Valorization of Oxygenated Compounds Present in Aqueous Biomass-Derived Feedstocks. J. Catal. 2018, 358, 266–276. [Google Scholar] [CrossRef]
- Huang, R.; Zhang, S.; Ding, J.; Meng, Y.; Zhong, Q.; Kong, D.; Gu, C. Effect of Adsorption Properties of Phosphorus-Doped TiO2 Nanotubes on Photocatalytic NO Removal. J. Colloid Interface Sci. 2019, 553, 647–654. [Google Scholar] [CrossRef]
- Lopes, F.C.S.M.R.; da Rocha, M.d.G.C.; Bargiela, P.; Sousa Ferreira, H.; Pires, C.A.d.M. Ag/TiO2 Photocatalyst Immobilized onto Modified Natural Fibers for Photodegradation of Anthracene. Chem. Eng. Sci. 2020, 227, 115939. [Google Scholar] [CrossRef]
- Erazo, A.; Mosquera, S.A.; Rodríguez-Paéz, J.E. Synthesis of ZnO Nanoparticles with Different Morphology: Study of Their Antifungal Effect on Strains of Aspergillus Niger and Botrytis Cinerea. Mater. Chem. Phys. 2019, 234, 172–184. [Google Scholar] [CrossRef]
- Arciniegas-Grijalba, P.A.; Patiño-Portela, M.C.; Mosquera-Sánchez, L.P.; Guerra Sierra, B.E.; Muñoz-Florez, J.E.; Erazo-Castillo, L.A.; Rodríguez-Páez, J.E. ZnO-Based Nanofungicides: Synthesis, Characterization and Their Effect on the Coffee Fungi Mycena citricolor and Colletotrichum sp. Mater. Sci. Eng. C 2019, 98, 808–825. [Google Scholar] [CrossRef] [PubMed]
- Asphalt Institute. Asphalt Binder Testing. Superpave Series N° 2 (SP-2), 3rd ed.; Asphalt Institute: Lexington, KY, USA, 2001. [Google Scholar]
- AASHTO. AASHTO T 240; Standard Method of Test for Effect of Heat and Air on a Moving Film of Asphalt (Rolling Thin-Film Oven Test), Test Standard Specifications for Transportation Materials and Methods of Sampling and Testing. AASHTO: Washington, DC, USA, 2017.
- ASTM. D7643; Standard Practice for Determining the Continuous Grading Temperatures and Continuous Grades for PG Graded Asphalt Binders, American Association of State Highway and Transportation. ASTM: West Conshohocken, PA, USA, 2016.
- ASTM. D7175; Standard Test Method for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer, American Association of State Highway and Transportation. ASTM: West Conshohocken, PA, USA, 2015.
- ASTM. D7405; Standard Test Method for Multiple Stress Creep and Recovery (MSCR) of Asphalt Binder Using a Dynamic Shear Rheometer, American Association of State Highway and Transportation. ASTM: West Conshohocken, PA, USA, 2020.
- AFNOR. NF EN 12697-22; Bituminous Mixtures. Test Methods: Wheel Tracking, Association Française de Normalisation. AFNOR: Paris, France, 2020.
- Walubita, L.F.; Faruk, A.N.M.; Zhang, J.; Hu, X.; Lee, S.I. The Hamburg Rutting Test—Effects of HMA Sample Sitting Time and Test Temperature Variation. Constr. Build. Mater. 2016, 108, 22–28. [Google Scholar] [CrossRef]
- Du, Y.; Chen, J.; Han, Z.; Liu, W. A Review on Solutions for Improving Rutting Resistance of Asphalt Pavement and Test Methods. Constr. Build. Mater. 2018, 168, 893–905. [Google Scholar] [CrossRef]
- AASHTO. M 332; Standard Specification for Performance-Graded Asphalt Binder Using Multiple Stress Creep Recovery (MSCR) Test, Test Standard Specifications for Transportation Materials and Methods of Sampling and Testing. AASHTO: Washington, DC, USA, 2020.
- AASHTO. AASHTO TP 101; Standard Method of Test for Estimating Fatigue Resistance of Asphalt Binders Using the Linear Amplitude Sweep, Test Standard Specifications for Transportation Materials and Methods of Sampling and Testing. AASHTO: Washington, DC, USA, 2018.
- Chen, H.; Zhang, Y.; Bahia, H.U. Estimating Asphalt Binder Fatigue at Multiple Temperatures Using a Simplified Pseudo-Strain Energy Analysis Approach in the LAS Test. Constr. Build. Mater. 2021, 266, 120911. [Google Scholar] [CrossRef]
- Chen, H.; Bahia, H.U. Modelling Effects of Aging on Asphalt Binder Fatigue Using Complex Modulus and the LAS Test. Int. J. Fatigue 2021, 146, 106150. [Google Scholar] [CrossRef]
- Kleizienė, R.; Paliukaitė, M.; Vaitkus, A. Effect of Nano SiO2, TiO2 and ZnO Modification to Rheological Properties of Neat and Polymer Modified Bitumen. In Proceedings of the 5th International Symposium on Asphalt Pavements & Environment (APE), ISAP APE 2019, Padua, Italy, 11–13 September 2019; Lecture Notes in Civil Engineering; Springer: Berlin/Heidelberg, Germany, 2020; Volume 48. [Google Scholar] [CrossRef]
Properties | Results |
---|---|
High Temperature Performance Grade [26] | PG 58-XX |
Penetration [27] | 60 × 10−1 mm |
Softening point [28] | 49.5 °C |
Apparent viscosity at 135 °C (20 rpm) [29] | 0.326 Pa·s |
Apparent viscosity at 150 °C (50 rpm) [29] | 0.178 Pa·s |
Apparent viscosity at 177 °C (100 rpm) [29] | 0.064 Pa·s |
Flash point [30] | 280 °C |
Relative density at 20 °C [31] | 1.012 |
Penetration Index (Pfeiffer e Van Doormaal) [32] | −0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Staub de Melo, J.V.; Manfro, A.L.; Barra, B.S.; Dell’Antonio Cadorin, N.; Borba Broering, W. Evaluation of the Rheological Behavior and the Development of Performance Equations of Asphalt Composites Produced with Titanium Dioxide and Zinc Oxide Nanoparticles. Nanomaterials 2023, 13, 288. https://doi.org/10.3390/nano13020288
Staub de Melo JV, Manfro AL, Barra BS, Dell’Antonio Cadorin N, Borba Broering W. Evaluation of the Rheological Behavior and the Development of Performance Equations of Asphalt Composites Produced with Titanium Dioxide and Zinc Oxide Nanoparticles. Nanomaterials. 2023; 13(2):288. https://doi.org/10.3390/nano13020288
Chicago/Turabian StyleStaub de Melo, João Victor, Alexandre Luiz Manfro, Breno Salgado Barra, Natália Dell’Antonio Cadorin, and Wellington Borba Broering. 2023. "Evaluation of the Rheological Behavior and the Development of Performance Equations of Asphalt Composites Produced with Titanium Dioxide and Zinc Oxide Nanoparticles" Nanomaterials 13, no. 2: 288. https://doi.org/10.3390/nano13020288
APA StyleStaub de Melo, J. V., Manfro, A. L., Barra, B. S., Dell’Antonio Cadorin, N., & Borba Broering, W. (2023). Evaluation of the Rheological Behavior and the Development of Performance Equations of Asphalt Composites Produced with Titanium Dioxide and Zinc Oxide Nanoparticles. Nanomaterials, 13(2), 288. https://doi.org/10.3390/nano13020288