Optical Sensing of Toxic Cyanide Anions Using Noble Metal Nanomaterials
Abstract
:1. Introduction
2. Plasmonic Nanomaterials-Based Colorimetric Sensors for Cyanide Ions
2.1. AgNPs-Based Colorimetric Sensors for Cyanide Ions
2.2. AuNP-Based Colorimetric Sensors for Cyanide Ions
2.3. CuNP-Based Colorimetric Sensors for Cyanide Ions
2.4. Core–Shell Nanoparticles-Based Colorimetric Sensors for Cyanide Ions
2.5. Anisotropic Plasmonic Nanomaterials-Based Colorimetric Sensors for Cyanide Ions
2.6. The Colorimetric Sensors for Cyanide Ions Using Plasmonic Nanoparticles with Peroxidase Activity
Materials | Advantages | Disadvantages | LOD | Real Samples | Ref. |
---|---|---|---|---|---|
SDS-AgNPs | Simple fabrication Highly selective | --- | 1.8 μM | Dam water | [50] |
ESNPs | Merged with nanofiber | Less selective 2-mercaptobenzothiazole is interfering | 0.46 μM | Pond, tap, and industrial water | [51] |
Agrose-AgNPs | Highly selective | Short linear range | 0.69 μM | Sea and river waters | [52] |
Seaweed-AgNPs | Highly selective Merged with test strips | Highly selective merged with test strips | 1 μM | River water | [53] |
Rosmarinic Acid-AgNPs | Merged with agarose test strips | Iodine is interfering | 0.01 μM | Tap and drinking water | [54] |
Photochemical AgNPs | Highly sensitive Fluorescence-based detection. | Sulfide is interfering | 2 μM | Pond and river water | [55] |
TX-100-AuNPs | Highly selective Compared with traditional cyanide sensors | No portable usage | 0.15 μM | Wastewater | [69] |
ATP-AuNPs | Highly selective | The analytical application was not done. This method worked on specific pH only. 30 min incubation time | 14 μM | --- | [70] |
PS-40 AuNPs | Highly selective | No portable usage | 0.5 μM | Water samples, Cassava roots | [71] |
Chitosan-AuNPs | Highly selective Portable usage | Less detection limit | 2.3 μM | Water and blood samples | [72] |
β-CD AuNPs | Highly selective Portable usage Merged with cotton swab Rapid | --- | 93 nM | Real water samples | [73] |
PDA-AuNPs | Highly selective Wide linear range | pH selective | 4.6 μM | Water samples | [74] |
PVA-chitosan AuNPs | Highly selective Thin film Portable usage | Time-consuming for thin film making No analytical application | 0.1 μM | --- | [75] |
Citrate-AuNPs | Highly selective Portable usage Merged with filter paper | --- | 7.68 μM | Tap and creek water samples | [76] |
ECNPs-NC film-CuNPs | Highly selective Portable usage Cellulose fiber | Time-consuming for cellulose fiber making | 0.58 μM | Water samples | [81] |
Au@Ag core–shell NPs | Highly selective Portable usage Merged with test strips | --- | 0.4 μM | Tap, sea, lake, and industrial water samples | [83] |
PS 40-Ag@Au core–shell NPs | Highly selective | No portable usage | 0.16 μM | Drinking water | [79] |
Au@Au–Ag yolk-shell NPs | Highly selective Rapid Merged with smartphone and computer programs. | Complicated synthetic procedure for NPs | --- | Tap and bond water | [84] |
Au@Ag core/shell NRs | Rapid Highly selective | No portable usage Complicated synthetic procedure for NPs | 0.5 μM | --- | [85] |
AuNRs | Highly selective | No portable usage | 0.5 nM | Tap, pond, and wastewater | [88] |
Au-Ag nanoboxes | Highly selective Wide range of Applications | A skilled person was need for NPs synthesis | 1 nM | Cell line detection | [89] |
AuNBPs | Highly selective | No portable usage | 1.58 nM | Tap, drinking, and seawater | [90] |
Cysteamine- AuNPs | Highly selective | No portable usage External reagents need for this tactic | 0.33 μM | Real water samples | [92] |
2.7. Noble Metal Nanomaterials-Based Rayleigh Scattering Sensors for Cyanide Ions
3. Noble Metal Nanomaterial-Based Fluorescence Sensors
3.1. AgNC-Based Fluorescence Sensors for Cyanide Ions
3.2. AuNC-Based Fluorescence Sensors for Cyanide Ions
3.3. Copper Nanocluster-Based Fluorescence Sensors for Cyanide Ions
3.4. Bimetallic Nanocluster-Based Fluorescence Sensors for Cyanide Ions
Materials | Sensing Mechanism | Linear Range | LOD | Real Samples | Ref. |
---|---|---|---|---|---|
DNA-AgNCs | Fluorescence quenching of DNA-Ag NCs was a static fluorescence quenching caused by the interaction of cyanide | 0.10–0.35 μM | 25.6 nM | River water | [109] |
BSA-AuNCs | Elsner reaction-based emission quenching | 0.20–9.6 μM | 200 nM | Ground, tap, pond, and lake water samples | [112] |
Lysozyme-AuNCs | Elsner reaction-based emission quenching | 5–120 μM | 190 nM | --- | [113] |
L-Aminoacid-AuNCs | Elsner reaction-based emission quenching | 2.3–34 μM | 180 nM | River and tap water samples | [114] |
AuNDs | Elsner reaction-based emission quenching | 0.29–8.87 μM | 150 nM | Natural water samples | [115] |
Ovalbumin-AuNCs | Elsner reaction-based emission quenching | 0.5–7.5 μM | 68 nM | Tap, drinking, and dam water samples | [116] |
DE-Au NCs | Cyanide etching of AuNCs surface | 0.02–1 μM | 10 nM | Water and urine samples | [117] |
CDs/AuNCs-polyvinylalcohol@ cellulose | Elsner reaction-based ratiometric emission quenching | 0.2–20 μM | 0.15 μM | Tap water | [118] |
CDs-AuNCs | Elsner reaction-based ratiometric emission quenching | 12.5–75 μM | --- | Food and drink samples | [119] |
Lysozyme-NP-AuNCs | Elsner reaction-based ratiometric emission quenching | 3–100 μM | 1 μM | Tap water and soil | [120] |
BSA-Ce3+-AuNCs | Elsner reaction-based ratiometric emission quenching | 0.1–15 μM | 50 nM | Drinking and pond water samples | [121] |
CuNPs | Metal-cyano complex formation and strong interaction between nanoprobe and analyte | 0.5–18 μM | 0.37 μM | River water | [124] |
Thiosalicylic acid -CuNCs | Metal-cyano complex formation and strong interaction between nanoprobe and analyte | 0.01–1 μM | 5 nM | Lake water | [125] |
Salicylaldehyde-CuNCs | Nucleophilic addition of salicylaldehyde groups in CuNCs by cyanide | --- | 0.51 μM | Bio-imaging | [126] |
Au/Ag bimettalic NCs | Elsner reaction-based emission quenching | 0.5–50 μM | 138 nM | Real water samples and live cell imaging | [129] |
3.5. Fluorescence Using Fluorophores Coupled with Plasmonic Nanoparticles for Cyanide Ions
Materials | Sensing Mechanism | Linear Range | LOD | Real Samples | Ref. |
---|---|---|---|---|---|
Rhodamine B-AuNPs | AuNPs made IFE process-based emission quenching-cyanide etching AuNPs surface followed by fluorescence recovery | 0.15–45 μM | 80 nM | --- | [132] |
PF-AgNPs | AgNPs made IFE process-based emission quenching-cyanide etching AgNPs surface followed by fluorescence recovery | 0.5–600 μM | 0.25 μM | Tap water | [133] |
Polyfluorene with AuNPs | Fluorescence of polymer quenched by AuNPs turned on, then the more stable Au(CN)2− were formed | 0.05–130 μM | --- | Groundwater, tap water, boiled water, and lake water samples | [134] |
Polyacetylene-AuNPs | Fluorescence of polymer quenched by Au NPs turned on, then the more stable Au(CN)2− were formed | --- | --- | Groundwater, tap water, boiled water, and lake water | [135] |
BSA-FITC-Au NPs | BSA-AuNPs made IFE process-based emission quenching-cyanide etching AuNPs surface followed by fluorescence recovery | 0–10 μM | 1 μM | Pond, sea, and tap water samples | [136] |
FITC-PS-40-Au NPs | PS-AuNPs made IFE process-based emission quenching-cyanide etching AuNPs surface followed by fluorescence recovery | 0–50 μM | 0.1 μM | Tap, river, drinking, and seawater samples | [137] |
CdTe QDs-AgNPs | Fluorescence of QDs quenched by AgNPs turned on, then the more stable Ag(CN)2− were formed | 0.38–96 μM | 0.15 nM | Serum and wastewater samples | [138] |
GQDs-AuNPs | AuNPs made FRET process-based emission quenching-cyanide etching AuNPs surface followed by fluorescence recovery | 1–200 μM | 0.52 μM | Plant tissues | [139] |
CDs-Au and AgNPs | MNPs surface can be etched by cyanide, bringing on absorbance decrease and regenerating the IFE-reduced fluorescence | 1–100 μM | 2 μM | Serum and water samples | [140] |
N,S, GQDs-AgNPs | AgNPs made IFE process-based emission quenching-cyanide etching AgNPs surface followed by fluorescence recovery | 10–500 μM | 0.52 μM | Tap water samples | [141] |
Fluorophore- DNA CuNPs | Nano lamp was constructed on the basis of the optical interaction between CuNPs and the fluorophore and the highly effective etching effect of cyanide on CuNPs | 2.5–20 μM | 1.96 μM | Live cell imaging | [142] |
4. Noble Metal Nanomaterials-Based SERS Sensors for Cyanide Ions
5. Conclusions and Outlooks
- ❖
- The very active characteristics and poor self-stability of metal nanostructured materials frequently limit the functionality of complex actual systems, making the nanosensors more proof-of-concept devices, especially for the aggregation-based colorimetric sensing technique.
- ❖
- Scientists should give special consideration to synthesizing novel, highly stable noble metal nanostructured materials and to developing new modification techniques to expand the functionality and analytical usage for real samples to satisfy the determination requirements for cyanide ions in problematic environments, such as wastewater, seawater, biological samples, and food additives.
- ❖
- Another key aspect of nanosensors is specificity. To effectively boost sensing specificity, development strategies should use the proper surface-functionalizing ligands, as well as designing new, rapid ligands with high selectivity for cyanide ions.
- ❖
- The next challenge is always the rapid on-site detection of cyanide ions. For quicker and more effective devices, with profitable industrial applications for cyanide anion monitoring, useful nanosensors should be integrated and combined with test strips, cotton swaps, gels, microfluidic/paper chips, membranes, smartphones, image processing techniques, and other technologies and strategies.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AgNCs | silver nanoclusters |
AgNPs | silver nanoparticles |
ATP | adenosine triphosphate |
AuNBPs | gold nanobipyramids |
AuNCs | gold nanoclusters |
AuNDs | gold nanodots |
AuNPs | gold nanoparticles |
AuNRs | gold nanorods |
BSA | bovine serum albumin |
CDs | carbon dots |
CuNCs | copper nanoclusters |
CuNPs | copper nanoparticles |
DE | double emissive |
DNA | deoxyribonucleic acid |
FITC | fluorescein isothiocyanate |
FRET | fluorescence resonance energy transfer |
GQDs | graphene quantum dots |
HR-TEM | high resolution transmission electron microscope |
IFE | inner filter effect |
LOD | limit of setection |
LSPR | localized surface plasmon resonance |
MNCs | metal nanoclusters |
MNPs | metal nanoparticles |
NC | nanocellulose |
NCs | nanoclusters |
NIR | near infrared |
nm | nanometer |
nM | nanomolar |
NPs | nanoparticles |
PDA | N,N-dimethylaminoethyl methacrylate |
PF | poly(9,9-bis(40-sulfnoatobutyl)fluorene-co-alt-1,4-phenylene |
PS-40 | polysorbate 40 |
PVA | poly(vinyl alcohol) |
QDs | Quantum dots |
RS | Raleigh scattering |
SDS | sodium dodecyl sulfate |
SERS | surface-enhanced Raman scattering |
SPR | surface plasmon resonance |
TMB | 3,3′,5,5′-tetramethylbenzidine |
TX-100 | Triton X-100 |
USEPA | United State Environmental Protection Agency |
UV | ultra violet |
WHO | World Health Organization |
β-CD-β- | cyclodextrin |
μM | micromolar |
References
- Antonini, E.; Brunori, M.; Rotilio, G.C.; Greenwood, C.; Malmström, B.G. The Interaction of Cyanide with Cytochrome Oxidase. Eur. J. Biochem. 1971, 23, 396. [Google Scholar]
- Ikegaya, H.; Iwase, H.; Hatanaka, K.; Sakurada, K.; Yoshida, K.-I.; Takatori, T. Diagnosis of cyanide intoxication by measurement of cytochrome c oxidase activity. Toxicol. Lett. 2001, 119, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Santanu, P.; Atanu, P.; Kumaresh, G. Supramolecular gels in cyanide sensing: A review. Mater. Chem. Front. 2021, 5, 584–602. [Google Scholar]
- Jian, M.; Purnendu, K.D. Recent developments in cyanide detection: A review. Anal. Chim. Acta 2010, 673, 117–125. [Google Scholar]
- Fang, W.; Li, W.; Xiaoqiang, C.; Juyoung, Y. Recent progress in the development of fluorometric and colorimetric chemosensors for detection of cyanide ions. Chem. Soc. Rev. 2014, 43, 4312–4324. [Google Scholar]
- World Health Organization. Concise International Chemical Assessment Document 61, Hydrogen Cyanide and Cyanides: Human Health Aspects; WHO: Geneva, Switzerland, 2004; pp. 4–5.
- Eisler, R.; Wiemeyer, S.N. Reviews of Environmental Contamination and Toxicology; Ware, G.W., Ed.; Springer: New York, NY, USA, 2004; pp. 21–54. [Google Scholar]
- Blumer, C.; Haas, D. Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Arch. Microbiol. 2000, 173, 170–177. [Google Scholar] [CrossRef]
- Thompson, D.T. Cyanide: Social, industrial and economic aspects. Gold Bull. 2001, 34, 133. [Google Scholar] [CrossRef] [Green Version]
- The Agency for Toxic Substances and Disease Registry. Toxicological Profile for Cyanide; US Department of Health and Human Services: Atlanta, GA, USA, 2006; pp. 221–228.
- Australian and New Zealand Environmental and Conservation Council (ANZECC); Agriculture and Resource Management Council of Australia and New Zealand. Australian Water Quality Guidelines for Fresh and Marine Water. Available online: https://www.waterquality.gov.au (accessed on 4 January 2023).
- United States Environmental Protection Agency (EPA). Titrimetric and Manual Spectrophotometric Determinative Methods for Cyanide. Available online: https://www.epa.gov (accessed on 4 January 2023).
- Official Journal of the European Union. Commission Directive 1998/83/EC; EU: Maastricht, The Netherlands, 1998; pp. L30–L42. [Google Scholar]
- Lee, C.-M.; Hamm, S.-Y.; Jeon, H.-T.; Kim, M.; Kim, H.-K.; Kim, K. Water Policy of Korea for Supplying Safe Groundwater in Rural Areas. Water 2017, 9, 508. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Guidelines for Drinking-Water Quality, 3rd ed.; WHO: Geneva, Switzerland, 2008; p. 188.
- Olayemi, J.F.; Thabo, T.I.N. Nanosilver dumbbell electronic sheet for cyanide and glucose detection. Microelectron. Eng. 2020, 230, 111364. [Google Scholar]
- Alex, L.S.; Giorgia, Z.; Sabine, K.; Eden, E.L.T.; Hatem, M.A.A.; Neil, P.Y.; Richard, G.C. Understanding gold nanoparticle dissolution in cyanide-containing solution via impact-chemistry. Phys. Chem. Chem. Phys. 2018, 20, 28300–28307. [Google Scholar]
- Alma, M.; Abdelmoneim, M.; Hamza, E.; Ahmed, H.H. Graphene nanosheets modified with curcumin-decorated manganese dioxide for ultrasensitive potentiometric sensing of mercury(II), fluoride and cyanide. Microchim. Acta 2018, 185, 529. [Google Scholar]
- Lin, L.; Ting, Y.; Jiaojiao, Y.; Xinfeng, Z. A robust gold nanocluster-peroxyoxalate chemiluminescence system for highly sensitive detection of cyanide in environmental water. Sens. Actuators B Chem. 2022, 353, 131038. [Google Scholar]
- Shamsipur, M.; Karimi, Z.; Tabrizi, M.A. A novel electrochemical cyanide sensor using gold nanoparticles decorated carbon ceramic electrode. Microchem. J. 2017, 133, 485–489. [Google Scholar] [CrossRef]
- Kang, N.Y.; Ha, H.H.; Yun, S.W.; Yu, Y.H.; Chang, Y.T. Diversity-driven chemical probe development for biomolecules: Beyond hypothesis-driven approach. Chem. Soc. Rev. 2011, 40, 3613–3626. [Google Scholar] [CrossRef] [PubMed]
- Mosier-Boss, P.A. Review of SERS Substrates for Chemical Sensing. Nanomaterials 2017, 7, 142. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Takemura, K.; Park, E.Y. Plasmonic Nanomaterial-Based Optical Biosensing Platforms for Virus Detection. Sensors 2017, 17, 2332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- dos Santos, P.S.S.; de Almeida, J.M.M.M.; Pastoriza-Santos, I.; Coelho, L.C.C. Advances in Plasmonic Sensing at the NIR—A Review. Sensors 2021, 21, 2111. [Google Scholar] [CrossRef] [PubMed]
- Susu, L.; Campu, A.; Craciun, A.M.; Vulpoi, A.; Astilean, S.; Focsan, M. Designing Efficient Low-Cost Paper-Based Sensing Plasmonic Nanoplatforms. Sensors 2018, 18, 3035. [Google Scholar] [CrossRef]
- Rajamanikandan, R.; Ilanchelian, M. Simple smartphone merged rapid colorimetric platform for the environmental monitoring of toxic sulfide ions by cysteine functionalized silver nanoparticles. Microchem. J. 2022, 174, 107071. [Google Scholar] [CrossRef]
- Rajamanikandan, R.; Lakshmi, A.D.; Ilanchelian, M. Smart phone assisted, rapid, simplistic, straightforward and sensitive biosensing of cysteine over other essential amino acids by b-cyclodextrin functionalized gold nanoparticles as a colorimetric probe. New J. Chem. 2020, 44, 12169–12177. [Google Scholar] [CrossRef]
- Rajamanikandan, R.; Ilanchelian, M. Naked eye and optical biosensing of cysteine over the other amino acids using β-cyclodextrin decorated silver nanoparticles as a nanoprobe. New J. Chem. 2018, 42, 9193–9199. [Google Scholar] [CrossRef]
- Vaibhavkumar, N.M.; Nirav, G.; Jigneshkumar, V.R.; Rakesh Kumar, S.; Hirakendu, B.; Suresh, K.K. Ligand chemistry of gold, silver and copper nanoparticles for visual read-out assay of pesticides: A review. Trends Anal. Chem. 2022, 153, 116607. [Google Scholar]
- Shuyu, Q.; Ziping, W.; Zhongxiang, Z.; Xiaomeng, W.; Qing, W.; Xun, Y. Engineering luminescent metal nanoclusters for sensing applications. Coord. Chem. Rev. 2022, 451, 214268. [Google Scholar]
- Rajamanikandan, R.; Aazaad, B.; Lakshmipathi, S.; Ilanchelian, M. Glutathione functionalized copper nanoclusters as a fluorescence platform for specific biosensing of cysteine and application in cellular imaging. Microchem. J. 2020, 158, 105253. [Google Scholar] [CrossRef]
- Anran, Z.; Yangping, Z.; Zhangmeng, L.; Gangan, H.; Lihua, W.; Yunzhi, F.; Xiaomei, W.; Yukou, D. Anisotropic gold nanostructures applied to improve solar energy conversion. Appl. Mater. Today 2022, 29, 101575. [Google Scholar]
- Dhanya, R.; Rajamanikandan, R.; Ilanchelian, M. Morphological and biophysical insights into the gold nanorods binding interaction of haemoglobin/myoglobin by hybrid spectroscopic approaches with bacterial cytotoxicity evaluation. J. Mol. Liq. 2022, 353, 118777. [Google Scholar]
- Weidao, Y.; Aiyue, H.; Yanzhen, M.; Yaqiong, Y.; Chuanchao, D. A turn-on fluorescent aptasensor for ampicillin detection based on gold nanoparticles and CdTe QDs. Microchem. J. 2022, 179, 107454. [Google Scholar]
- Wenjuan, D.; Ruiping, W.; Xiaojuan, G.; Wenting, L.; Chuan, D. A far-red FRET fluorescent probe for ratiometric detection of L-cysteine based on carbon dots and N-acetyl-L-cysteine-capped gold nanoparticles. Spectrochim. Acta A 2019, 213, 90–96. [Google Scholar]
- Seok, J.S.; Ju, H. Plasmonic Optical Biosensors for Detecting C-Reactive Protein: A Review. Micromachines 2020, 11, 895. [Google Scholar] [CrossRef]
- Kim, J.; Son, C.; Choi, S.; Yoon, W.J.; Ju, H. A Plasmonic Fiber Based Glucometer and Its Temperature Dependence. Micromachines 2018, 9, 506. [Google Scholar] [CrossRef] [Green Version]
- Tran, N.H.T.; Kim, J.; Phan, T.B.; Khym, S.; Ju, H. Label-free optical biochemical sensors via liquid-cladding-induced modulation of waveguide modes. ACS Appl. Mater. Interfaces 2017, 9, 31478–31487. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, S.; Nanda, S.S.; Yi, D.K.; Ju, H. Effects of Aspect Ratio Heterogeneity of an Assembly of Gold Nanorod on Localized Surface Plasmon Resonance. J. Phys. Chem. Lett. 2020, 11, 5972–5979. [Google Scholar] [CrossRef]
- Tran, N.H.T.; Phan, T.B.; Nguyen, T.T.; Ju, H. Coupling of silver nanoparticle-conjugated fluorescent dyes into optical fiber modes for enhanced signal-to-noise ratio. Biosens. Bioelectron. 2021, 176, 112900. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, S.; Nguyen, T.T.; Lee, R.; Li, T.; Yun, C.; Ham, Y.; An, S.S.A.; Ju, H. Label-Free Quantitative Immunoassay of Fibrinogen in Alzheimer Disease Patient Plasma Using Fiber Optical Surface Plasmon Resonance. J. Electron. Mater. 2016, 45, 2354–2360. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Trinh, K.T.L.; Yoon, W.J.; Lee, N.Y.; Ju, H. Integration of a microfluidic polymerase chain reaction device and surface plasmon resonance fiber sensor into an inline all-in-one platform for pathogenic bacteria detection. Sens. Actuator B-Chem. 2017, 242, 1–8. [Google Scholar] [CrossRef]
- Tran, V.T.; Yoon, W.J.; Lee, J.H.; Ju, H. DNA sequence-induced modulation of bimetallic surface plasmons in optical fibers for sub-ppq (parts-per-quadrillion) detection of mercury ions in water. J. Mater. Chem. A 2018, 6, 23894–23902. [Google Scholar] [CrossRef]
- Nu, T.T.V.; Tran, N.H.T.; Nam, E.; Nguyen, T.T.; Yoon, W.J.; Cho, S.; Kim, J.; Chang, K.A.; Ju, H. Blood-based immunoassay of tau proteins for early diagnosis of Alzheimer’s disease using surface plasmon resonance fiber sensors. RSC Adv. 2018, 8, 7855–7862. [Google Scholar] [CrossRef] [Green Version]
- Tran, V.T.; Ju, H. Fluorescence Enhancement via Dual Coupling of Dye Molecules with Silver Nanostructures. Chemosensors 2021, 9, 217. [Google Scholar] [CrossRef]
- Wu, G.; Dou, X.; Li, D.; Xu, S.; Zhang, J.; Ding, Z.; Xie, J. Recent Progress of Fluorescence Sensors for Histamine in Foods. Biosensors 2022, 12, 161. [Google Scholar] [CrossRef]
- Li, H.; Chen, J.; Huang, B.; Kong, L.; Sun, F.; Li, L.; Peng, C.; Cai, H.; Hou, R. A Rapid Fluorescence Sensor for the Direct Quantification of Rongalite in Foodstuffs. Foods 2022, 11, 2650. [Google Scholar] [CrossRef]
- Rasoul, G.; Abbas, A.; Tayyebeh, M. Utilizing inner flter efect in resonance Rayleigh scattering technique: A case study with silver nanocubes as RRS probe and several analytes as absorbers. Microchim. Acta 2023, 190, 37. [Google Scholar]
- Yangjun, D.; Shasha, W.; Jinhua, L.; Lingxin, C. Nanomaterial-based optical sensors for mercury ions. Trends Anal. Chem. 2016, 82, 175–190. [Google Scholar]
- Xiang, Y.; Wu, X.; Liu, D.; Li, Z.; Chu, W.; Feng, L. Gold nanorod-seeded growth of silver nanostructures: From homogeneous coating to anisotropic coating. Langmuir 2008, 24, 3465–3470. [Google Scholar] [CrossRef]
- Bin, L.; Jinyin, Z.; Gang, W. Recent advances in the design of colorimetric sensors for environmental monitoring. Environ. Sci. Nano 2020, 7, 2195–2213. [Google Scholar]
- Mani, K.S.; Rajamanikandan, R.; Ilanchelian, M.; Narenkumar, M.; Mathivanan, J.; Rajendran, S.P. Smartphone assisted quinoline-hemicyanine based fluorescent probe for the selective detection of glutathione and the application in living cells. Spectrochim. Acta A 2020, 243, 118809. [Google Scholar] [CrossRef]
- Vilela, D.; Cristina Gonzalez, M.; Escarpa, A. Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: Chemical creativity behind the assay: A review. Anal. Chim. Acta 2012, 751, 24–43. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, H.; Chen, Z.; Wang, X.; Choo, J.; Chen, L. Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: Strategies and applications. Biosens. Bioelectron. 2018, 114, 52–65. [Google Scholar] [CrossRef]
- Munyayi, T.A.; Vorster, B.C.; Mulder, D.W. The Effect of Capping Agents on Gold Nanostar Stability, Functionalization, and Colorimetric Biosensing Capability. Nanomaterials 2022, 12, 2470. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Umar, K.; Ibrahim, M.N.M. Silver nanoparticles: Various methods of synthesis, size affecting factors and their potential applications—A review. Appl. Nanosci. 2020, 10, 1369–1378. [Google Scholar] [CrossRef]
- Rossi, A.; Zannotti, M.; Cuccioloni, M.; Minicucci, M.; Petetta, L.; Angeletti, M.; Giovannetti, R. Silver Nanoparticle-Based Sensor for the Selective Detection of Nickel Ions. Nanomaterials 2021, 11, 1733. [Google Scholar] [CrossRef]
- Elgamouz, A.; Idriss, H.; Nassab, C.; Bihi, A.; Bajou, K.; Hasan, K.; Abu Haija, M.; Patole, S.P. Green Synthesis, Characterization, Antimicrobial, Anti-Cancer, and Optimization of Colorimetric Sensing of Hydrogen Peroxide of Algae Extract Capped Silver Nanoparticles. Nanomaterials 2020, 10, 1861. [Google Scholar] [CrossRef] [PubMed]
- Mochi, F.; Burratti, L.; Fratoddi, I.; Venditti, I.; Battocchio, C.; Carlini, L.; Iucci, G.; Casalboni, M.; De Matteis, F.; Casciardi, S.; et al. Plasmonic Sensor Based on Interaction between Silver Nanoparticles and Ni2+ or Co2+ in Water. Nanomaterials 2018, 8, 488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salahaddin, H.; Khalil, F.; Mehrdad, F.; Reza, E. Sabzi, Silver nanoparticles as a cyanide colorimetric sensor in aqueous media. Anal. Methods 2011, 3, 2599–2603. [Google Scholar]
- Pourreza, N.; Hamed, G.; Tina, N.; Hossein, Y. Green in-situ synthesized silver nanoparticles embedded in bacterial cellulose nanopaper as a bionanocomposite plasmonic sensor. Biosens. Bioelectron. 2015, 74, 353–359. [Google Scholar] [CrossRef]
- Hatam, H.; Hanshemi, P. Synthesis of silver nanoparticles-Agarose composite and its application to the optical detection of cyanide ion. Anal. Sci. 2018, 34, 567–570. [Google Scholar]
- Princy, K.F.; Derry Holaday, M.G.; Anu, G. Marine macroalgae biofabricated silver nanoparticles as naked-eye colorimetric and turn-on fluorescent sensor for cyanide ions in aqueous media. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100399. [Google Scholar] [CrossRef]
- Shreya, B.; Gaurav, V.; Paul, P. Rosmarinic Acid-Capped Silver Nanoparticles for Colorimetric Detection of CN− and Redox-Modulated Surface Reaction-Aided Detection of Cr(VI) in Water. ACS Omega 2022, 7, 1318–1328. [Google Scholar]
- Niharendu, M.; Shubhashis, D.; Mintu, H. A new spectroscopic protocol for selective detection of water soluble sulfides and cyanides: Use of Ag-nanoparticles synthesized by Ag(I)–reduction via photo-degradation of azo-food-colorant. J. Photochem. Photobiol. A Chem. 2014, 275, 72–80. [Google Scholar]
- Sun, H.; Zhang, Y.Y.; Si, S.H.; Zhu, D.R.; Fung, Y.S. Piezoelectric quartz crystal (PQC) with photochemically deposited nano-sized Ag particles for determining cyanide at trace levels in water. Sens. Actuators B 2005, 108, 925–932. [Google Scholar] [CrossRef]
- Zhenxin, W.; Lina, M. Gold nanoparticle probes. Coord. Chem. Rev. 2009, 253, 1607–1618. [Google Scholar]
- Zhiqin, Y.; Hu, C.C.; Chang, H.T.; Lu, C. Gold nanoparticles as sensitive optical probes. Analyst 2016, 141, 1611–1626. [Google Scholar]
- Pal, A.; Bandyopadhyay, M. Photochemical formation of gold nanoparticles in aqueous Triton X-100 and its application for cyanide determination. Ind. J. Chem. Tech. 2000, 7, 75–78. [Google Scholar]
- Kim, M.H.; Sudeok, K.; Jang, H.H.; Yi, S.; Seo, S.H.; Han, S. A gold nanoparticle-based colorimetric sensing ensemble for the colorimetric detection of cyanide ions in aqueous solution. Tetrahedron Lett. 2010, 51, 4712–4716. [Google Scholar] [CrossRef]
- Liu, C.Y.; Tseng, W.L. Using polysorbate 40-stabilized gold nanoparticles in colorimetric assays of hydrogen cyanide in cyanogenic glycoside-containing plants. Anal. Methods 2012, 4, 2537–2542. [Google Scholar] [CrossRef]
- Radhakumary, C.; Sreenivasan, K. Rapid and highly selective dipchecking for cyanide ions in aqueous media. Analyst 2012, 137, 5387–5391. [Google Scholar] [CrossRef]
- Rajamanikandan, R.; Ilanchelian, M. b-Cyclodextrin protected gold nanoparticle-based cotton swabs as an effective candidate for specific sensing of trace levels of cyanide. Anal. Methods 2019, 11, 97–104. [Google Scholar] [CrossRef]
- Alinejad, Z.; Raeesi, M.; Mahdavian, A.R. High performance cyanide sensing with tunable limit of detection by stimuli-responsive gold nanoparticles modified with poly (N,N-dimethylaminoethyl methacrylate). Talanta 2019, 204, 198–205. [Google Scholar] [CrossRef]
- Budlayan, M.L.M.; Oracion, J.P.L.; La Rosa, L.B.D.; Rodriguez, M.J.D.; Patricio, J.N.; Perez, S.J.L.P.; Arco, S.D.; Manigo, J.P.; Eleanor, S.A.; Arnold, C.A.; et al. Preparation of Spin-Coated Poly(vinyl alcohol)/chitosan/Gold Nanoparticles Composite and Its Potential for Colorimetric Detection of Cyanide in Water. Pol. J. Environ. Stud. 2022, 31, 1–8. [Google Scholar] [CrossRef]
- Budlayan, M.L.M.; Oracion, J.P.L.; La Rosa, L.B.D.; Rodriguez, M.J.D.; Patricio, J.N.; Perez, S.J.L.P.; Arco, S.D.; Manigo, J.P.; Eleanor, S.A.; Arnold, C.A.; et al. Gold nanoparticles-decorated paper-based sensor for rapid cyanide detection in water. Adv. Nat. Sci. Nanosci. Nanotechnol. 2021, 12, 025007. [Google Scholar] [CrossRef]
- Liu, C.Y.; Tseng, W.L. Colorimetric assay for cyanide and cyanogenic glycoside using polysorbate 40-stabilized gold nanoparticles. Chem. Commun. 2011, 47, 2550–2552. [Google Scholar] [CrossRef]
- Huang, C.C.; Lai, W.C.; Tsai, C.Y.; Yang, C.H.; Yeh, C.S. Reversible Synthesis of Sub-10 nm Spherical and Icosahedral Gold Nanoparticles from a Covalent Au(CN)2 Precursor and Recycling of Cyanide to form Ferric Ferrocyanide for Cell Staining. Chem. Eur. J. 2012, 18, 4107–4114. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Q.; Zhou, X.; Wen, C.-Y.; Yu, J.; Han, X.; Li, X.; Yan, Z.-F.; Zeng, J. A convenient colorimetric method for sensitive and specific detection of cyanide using Ag@Au core—Shell nanoparticles. Sens. Actuators B 2016, 228, 366–372. [Google Scholar] [CrossRef]
- Ali, H.; Jamil, A.B.; Muhammad, N.; Dhani, B.R.; Zia-ul-Hassan, S.; Yasin, O.; Mehmet, L.Y.; Hassan, K.; Hongjun, L.; Amber, R.S. Identification of heavy metal ions from aqueous environment through gold, Silver and Copper Nanoparticles: An excellent colorimetric approach. Environ. Res. 2022, 205, 112475. [Google Scholar]
- Mehran, P.; Shahram, N.; Mohammad, A.F.Z.; Farzaneh, K.; Shaobin, W.; Farzin, N. Fabrication of stable copper nanoparticles embedded in nanocellulose film as a bionanocomposite plasmonic sensor and thereof for optical sensing of cyanide ion in water samples. Cellulose 2019, 26, 4945–4956. [Google Scholar]
- Ma, Y.; Li, W.; Cho, E.C.; Li, Z.; Yu, T.; Zeng, J.; Xie, Z.; Xia, Y. Au@Ag Core–shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties. ACS Nano 2010, 4, 6725–6734. [Google Scholar] [CrossRef] [Green Version]
- Zeng, J.; Cao, Y.Y.; Chen, J.J.; Wang, X.D.; Yu, J.F.; Yu, B.B.; Yan, Z.F.; Chen, X. Au@Ag core/shell nanoparticles as colorimetric probes for cyanide sensing. Nanoscale 2014, 6, 9939–9943. [Google Scholar] [CrossRef]
- Cong, Y.W.; Yuzhu, C.; Rong, L.; Jiankun, H.; Dawei, W.; Zejun, C.; Benjamin, M.; Zeng, J. Matrix colorimetry for high-resolution visual detection of free cyanide with Au@Au–Ag yolk–Shell nanoparticles. J. Mater. Chem. C 2021, 9, 4661–4669. [Google Scholar]
- Zhang, R.L.; Jia, S.L.; Wang, K.M. Au@Ag Core/Shell Nanorods Based Colorimetric Assay for the Rapid and Selective Detection of Cyanide Anions. Sci. Adv. Mater. 2019, 11, 1739–1744. [Google Scholar] [CrossRef]
- Dong, Z.Z.; Chao, Y.; Kasipandi, V.; Guodong, L.; Chung, H.L.; Dik-Lung, M. Construction of a Nano Biosensor for Cyanide Anion Detection and Its Application in Environmental and Biological Systems. ACS Sens. 2017, 2, 1517–1522. [Google Scholar] [CrossRef]
- Zeng, J.; Yu, Z.; Teng, Z.; Rashed, A.; Zhiwei, Q.; Yuzhu, C.; Jiankun, H.; Dawei, W.; Zifeng, Y.; Yadong, Y. Anisotropic plasmonic nanostructures for colorimetric sensing. Nano Today 2020, 32, 100855. [Google Scholar] [CrossRef]
- Sujin, L.; Yun-Sik, N.; Sung-Hee, C.; Yeonhee, L.; Kang-Bong, L. Highly sensitive photometric determination of cyanide based on selective etching of gold nanorods. Microchim. Acta 2016, 183, 3035–3041. [Google Scholar]
- Wang, P.; Yujie, B.; Chi, Y.; Xiaomin, L.; Lei, Z.; Wenxing, W.; Ahmed, M.E.; Jian, Z.; Dongyuan, Z.; Lei, S.; et al. Intracellular and in Vivo Cyanide Mapping via Surface Plasmon Spectroscopy of Single Au−Ag Nanoboxes. Anal. Chem. 2017, 89, 2583–2591. [Google Scholar] [CrossRef] [PubMed]
- Thangarasu, S.; Ilanchelian, M. Colorimetric and visual detection of cyanide ions based on the morphological transformation of gold nanobipyramids into gold nanoparticles. New J. Chem. 2020, 44, 4713–4718. [Google Scholar]
- Xia, C.; Niu, Z.; John Hugh, S.; Qiansi, C.; Pingping, L.; Lifeng, J.; Qingxia, Z.; Lin, F.; Jiming, H.; Huina, Z. Colorimetric detection of Hg2+ and Pb2+ based on peroxidase-like activity of graphene oxide–gold nanohybrids. Anal. Methods 2015, 7, 1951–1957. [Google Scholar]
- Dan, Z.; Na, L.; Yan-Jie, X.; Jing-Jing, H.; Chuan-Xia, C. Colorimetric Sensing of Cyanide Based on Inhibition of Peroxidase-like Activity of Cysteamine-modified Gold Nanoparticles. Chin. J. Anal. Chem. 2020, 48, 889–895. [Google Scholar]
- Pasternack, R.F.; Collings, P.J. Resonance light scattering: A new technique for studying chromophore aggregation. Science 1995, 269, 935–939. [Google Scholar] [CrossRef]
- Riham, E.-K.; Digambara, P. Gold and silver nanoparticles in resonance Rayleigh scattering techniques for chemical sensing and biosensing: A review. Microchim. Acta 2019, 186, 667. [Google Scholar]
- Eleonora, P.; Ulrich, J.K. Localized surface plasmon resonance: Nanostructures, bioassays and biosensing—A review. Anal. Chim. Acta 2011, 706, 8–24. [Google Scholar]
- Roll, D.; Malicka, J.; Gryczynski, I.; Gryczynski, Z.; Lakowicz, J.R. Metallic colloid wavelength-ratiometric scattering sensors. Anal. Chem. 2003, 75, 3440–3445. [Google Scholar] [CrossRef] [Green Version]
- Razieh, M.; Abbas, A.; Tayyebeh, M. A simple cyanide sensing probe based on Ag/Fe3O4 nanoparticles. RSC Adv. 2015, 5, 15886–15891. [Google Scholar]
- Yulán, H.; Yves, C.; Raluca, M.F.; Jesús, M.F.; Troy, A.L. Highly sensitive ratiometric quantification of cyanide in water with gold nanoparticles via Resonance Rayleigh Scattering. Talanta 2017, 167, 51–58. [Google Scholar]
- Rajamanikandan, R.; Ilanchelian, M. Fluorescence Sensing Approach for High Specific Detection of 2,4,6- Trinitrophenol Using Bright Cyan Blue Color-Emittive Poly(vinylpyrrolidone)-Supported Copper Nanoclusters as a Fluorophore. ACS Omega 2018, 3, 18251–18257. [Google Scholar] [CrossRef]
- Sivakumar, R.; Lee, N.Y. Paper-Based Fluorescence Chemosensors for Metal Ion Detection in Biological and Environmental Samples. BioChip J. 2021, 15, 216–232. [Google Scholar] [CrossRef]
- Xiao, L.; Sun, H. Novel properties and applications of carbon nanodots. Nanoscale Horiz. 2018, 3, 565–597. [Google Scholar] [CrossRef]
- Sanyukta, P.; Reena, J.; Deepak, S.; Monisha, T.; Kumar, P.; Tushar, K.; Khemchand, D.; Kamlesh, S. Recent development in nanomaterials fabricated paper-based colorimetric and fluorescent sensors: A review. Trends Environ. Anal. Chem. 2021, 31, e00136. [Google Scholar]
- Pooja, D.; Anupma, T.; Rebecca, Y.L.; Sonia, S.; Rishabh, J.; Praveen, K. Progress in the materials for optical detection of arsenic in water. Trends Anal. Chem. 2019, 110, 97–115. [Google Scholar]
- Yu-Syuan, L.; Yu-Feng, L.; Amit, N.; Yu-Fen, H.; Huan-Tsung, C. A critical review of copper nanoclusters for monitoring of water quality. Sens. Actuators Rep. 2021, 3, 100026. [Google Scholar]
- Libing, Z.; Erkang, W. Metal nanoclusters: New fluorescent probes for sensors and bioimaging. Nano Today 2014, 9, 132–157. [Google Scholar]
- Schmid, G. Large clusters and colloids. Metals in the embryonic state. Chem. Rev. 1992, 92, 1709–1727. [Google Scholar] [CrossRef]
- Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208–8271. [Google Scholar] [CrossRef]
- Yun-Peng, X.; Yang-Lin, S.; Guang-Xiong, D.; Jun, H.; Lai-Ping, Z.; Xing, L. Silver nanoclusters: Synthesis, structures and photoluminescence. Mater. Chem. Front. 2020, 4, 2205–2222. [Google Scholar]
- Jun, P.; Jian, L.; Qiu-Lin, W.; Yu, L.; Qiu, E.C.; Zhang-Jie, H.; Zhong-Tao, D. The presence of a single-nucleotide mismatch in linker increases the fluorescence of guanine-enhanced DNA-templated Ag nanoclusters and their application for highly sensitive detection of cyanide. RSC Adv. 2018, 8, 41464–41471. [Google Scholar]
- Li-Yi, C.; Chia-Wei, W.; Zhiqin, Y.; Huan-Tsung, C. Fluorescent Gold Nanoclusters: Recent Advances in Sensing and Imaging. Anal. Chem. 2015, 87, 216–229. [Google Scholar]
- Xie, J.; Yuangang, Z.; Jackie, Y.Y. Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters. J. Am. Chem. Soc. 2009, 131, 888–889. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ai, K.; Cheng, X.; Huo, L.; Lu, L. Gold-Nanocluster-Based Fluorescent Sensors for Highly Sensitive and Selective Detection of Cyanide in Water. Adv. Funct. Mater. 2010, 20, 951–956. [Google Scholar] [CrossRef]
- Dongtao, L.; Lili, L.; Fengxia, L.; Shaomin, S.; Yingfu, L.; Matin, M.F.C.; Chuan, D. Lysozyme-stabilized gold nanoclusters as a novel fluorescence probe for cyanide recognition. Spectrochim. Acta Part A 2014, 121, 77–80. [Google Scholar]
- Guomei, Z.; Yunyun, Q.; Ting, X.; Caihong, Z.; Yan, Z.; Lihong, S.; Shaomin, S.; Chuan, D. Highly selective and sensitive nanoprobes for cyanide based on gold nanoclusters with red fluorescence emission. Nanoscale 2015, 7, 12666–12672. [Google Scholar]
- Nagamalai, V.; Maria, T.F.A. Novel one-pot and facile room temperature synthesis of gold nanodots and application as highly sensitive and selective probes for cyanide detection. Nanotechnology 2016, 27, 475505. [Google Scholar]
- Rajamanikandan, R.; Ilanchelian, M. Protein-Localized Bright-Red Fluorescent Gold Nanoclusters as Cyanide-Selective Colorimetric and Fluorometric Nanoprobes. ACS Omega 2018, 3, 14111–14118. [Google Scholar] [CrossRef]
- Hongwei, Y.; Yang, Y.; Shilei, L.; Xingxiao, Z.; He, Z.; Xiaosen, L.; Zhiqin, Y. Ratiometric and sensitive cyanide sensing using dual-emissive gold nanoclusters. Anal. Bioanal. Chem. 2020, 412, 5819–5826. [Google Scholar]
- Yan, H.; Xiaomei, L.; Xiaoming, J.; Peng, W. Carbon dots and AuNCs co-doped electrospun membranes for ratiometric fluorescent determination of cyanide. J. Hazard. Mater. 2020, 384, 121368. [Google Scholar]
- Jing, W.; Yu, Q.; Daquan, L.; Xinyue, L.; Chenxing, J.; Liang, H.; Huimin, W.; Jun, H. Ratiometric fluorometric and visual determination of cyanide based on the use of carbon dots and gold nanoclusters. Microchim. Acta 2019, 186, 809. [Google Scholar]
- Wei-Bin, T.; Jui-Yeh, R.; Hung-Chi, C.; Wei-Lung, T. Synthesis of gold nanoclusters-loaded lysozyme nanoparticles for ratiometric fluorescent detection of cyanide in tap water, cyanogenic glycoside-containing plants, and soils. Environ. Res. 2022, 207, 112144. [Google Scholar]
- Chia-Wei, W.; Ya-Na, C.; Bo-Yi, W.; Cheng-Kai, L.; Ying-Chieh, C.; Yu-Huei, H.; Huan-Tsung, C. Sensitive detection of cyanide using bovine serum albumin-stabilized cerium/gold nanoclusters. Anal. Bioanal. Chem. 2016, 408, 287–294. [Google Scholar]
- Javad, B.M.P.; Mehavesh, H.; Ahmed, A.M. Potential sensing of cyanide anion using fluorescent lysozyme gold-aryl bioconjugates. Chem. Pap. 2022, 76, 3619–3626. [Google Scholar]
- Rajamanikandan, R.; Ilanchelian, M. Protein-protected red emittive copper nanoclusters as a fluorometric probe for highly sensitive biosensing of creatinine. Anal. Methods 2018, 10, 3666–3674. [Google Scholar] [CrossRef]
- Safieh, M.; Raheleh, A.; Afsaneh, S.; Iraj, N. Blue-emitting copper nanoparticles as a fluorescent probe for detection of cyanide ions. Talanta 2017, 175, 514–521. [Google Scholar]
- Jinshun, C.; Chia-Wei, W.; Po-Cheng, C.; Yi-Jyun, L.; Yu-Chi, L.; Huan-Tsung, C. Control of pH for separated quantitation of nitrite and cyanide ions using photoluminescent copper nanoclusters. Anal. Methods 2017, 9, 5254–5259. [Google Scholar]
- Weihua, D.; Zhichuan, C.; Wei, C.; Yayun, G.; Ting, Z.; Chengniu, W.; Wenqing, L.; Fei, S. Copper nanoclusters with/without salicylaldehyde-modulation for multifunctional detection of mercury, cobalt, nitrite and cyanide ions in aqueous solution and bioimaging. Nanotechnology 2021, 32, 145704. [Google Scholar]
- Wang, D.W.; Cai, R.; Sharma, S.; Jirak, J.; Thummanapelli, S.K.; Akhmedov, N.G.; Zhang, H.; Liu, X.B.; Petersen, J.L.; Shi, X.D. “Silver Effect” in gold(I) catalysis: An overlooked important factor. J. Am. Chem. Soc. 2012, 134, 9012–9019. [Google Scholar] [CrossRef]
- Yi, P.; Xinlin, W.; Xiaodong, G.; Hui, W.; Haiyun, S.; Canping, P.; Naifeng, X. Immunoassay based on Au-Ag bimetallic nanoclusters for colorimetric/fluorescent double biosensing of dicofol. Biosen. Bioelect. 2021, 194, 113611. [Google Scholar]
- Lu, T.; Yangfan, L.; Tingting, R.; Yaoli, T.; Binsheng, Y.; Yingqi, L. Novel bimetallic gold−silver nanoclusters with “Synergy”-enhanced fluorescence for cyanide sensing, cell imaging and temperature sensing. Talanta 2017, 170, 530–539. [Google Scholar]
- He, X.R.; Zhong, Z.F.; Guo, Y.B. Gold Nanoparticle-Based Monitoring of the Reduction of Oxidized to Reduced Glutathione. Langmuir 2007, 23, 8815–8819. [Google Scholar] [CrossRef]
- He, X.R.; Liu, H.B.; Li, Y.L.; Wang, S.; Xu, X.H.; Zhu, D.B. Gold Nanoparticle-Based Fluorometric and Colorimetric Sensing of Copper(II) Ions. Adv. Mater. 2005, 17, 2811–2815. [Google Scholar] [CrossRef]
- Shang, L.; Lihua, J.; Shaojun, D. Sensitive turn-on fluorescent detection of cyanide based on the dissolution of fluorophore functionalized gold nanoparticles. Chem. Commun. 2009, 21, 3077–3079. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Chuanjiang, Q.; Lihua, J.; Lixiang, W.; Shaojun, D. Turn-on fluorescent detection of cyanide based on the inner filter effect of silver nanoparticles. Analyst 2009, 134, 1477–1482. [Google Scholar] [CrossRef] [PubMed]
- Xiaoding, L.; Yi, Z.; Jingui, Q.; Zhen, L. A Highly Sensitive and Selective Fluorescent Probe for Cyanide Based on the Dissolution of Gold Nanoparticles and Its Application in Real Samples. Chem. Eur. J. 2011, 17, 9691–9696. [Google Scholar]
- Xiaoding, L.; Qi, Z.; Yi, Z.; Zhaomin, W.; Jingui, Q.; Zhen, L. Functionalized polyacetylenes with strong luminescence: ‘‘turn-on’’ fluorescent detection of cyanide based on the dissolution of gold nanoparticles and its application in real samples. J. Mater. Chem. 2012, 22, 5581–5586. [Google Scholar]
- Shih-Chun, W.; Pang-Hung, H.; Yen-Fei, L.; Yang-Wei, L.; Chih-Ching, H. Selective Detection of Iodide and Cyanide Anions Using Gold-Nanoparticle-Based Fluorescent Probes. ACS Appl. Mater. Interfaces 2012, 4, 2652–2658. [Google Scholar]
- Chieh, C.; Hsueh-Yang, C.; Chung-Shu, W.; Jagan Singh, M.; Turibius, S.; Fu-Hsiang, K. A highly sensitive and selective cyanide detection using a gold nanoparticle-based dual fluorescence–colorimetric sensor with a wide concentration range. Sens. Actuators B 2016, 227, 283–290. [Google Scholar]
- Ali, A.E.; Kazemifard, N.; Rezaei, B. Label-free and turn-on fluorescent cyanide sensor based on CdTe quantum dots using silver nanoparticles. RSC Adv. 2015, 5, 40088–40093. [Google Scholar]
- Lili, W.; Jing, Z.; Sheng, Y.; Cuichen, W.; Changhui, L.; Yue, X.; Yinhui, L.; Zhihe, Q.; Ronghua, Y. Two-Photon Sensing and Imaging of Endogenous Biological Cyanide in Plant Tissues Using Graphene Quantum Dot/Gold Nanoparticle Conjugate. ACS Appl. Mater. Interfaces 2015, 7, 19509–19515. [Google Scholar]
- Jia, Z.; Liang, D.; Shu-Hong, Y. A selective sensor for cyanide ion (CN) based on the inner filter effect of metal nanoparticles with photoluminescent carbon dots as the fluorophore. Sci. Bull. 2015, 60, 785–791. [Google Scholar]
- Chuanxia, C.; Dan, Z.; Tao, H.; Jian, S.; Xiurong, Y. Highly fluorescent nitrogen and sulfur co-doped graphene quantum dots for an inner filter effect-based cyanide sensor. Sens. Actuators B 2017, 241, 779–788. [Google Scholar]
- Zhihe, Q.; Lina, H.; Le, Y.; Lixuan, Z.; Sheng, Y.; Jing, Z.; Ronghua, Y. A Reversible Nanolamp for Instantaneous Monitoring of Cyanide Based on an Elsner-Like Reaction. Anal. Chem. 2016, 88, 9759–9765. [Google Scholar]
- Alvarez-Puebla, R.A.; Liz-Marzan, L.M. Environmental applications of plasmon assisted Raman scattering. Energy Environ. Sci. 2010, 3, 1011–1017. [Google Scholar] [CrossRef]
- Zhang, T.; Quan, X.; Cao, N.; Zhang, Z.; Li, Y. Label-Free Detection of DNA via Surface-Enhanced Raman Spectroscopy Using Au@Ag Nanoparticles. Nanomaterials 2022, 12, 3119. [Google Scholar] [CrossRef]
- Parmigiani, M.; Albini, B.; Pellegrini, G.; Genovesi, M.; De Vita, L.; Pallavicini, P.; Dacarro, G.; Galinetto, P.; Taglietti, A. Surface-Enhanced Raman Spectroscopy Chips Based on Silver Coated Gold Nanostars. Nanomaterials 2022, 12, 3609. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, L.; Ma, Z.; Wang, M.; Zhao, R.; Zou, Y.; Fan, Y. Ag Nanoparticles Decorated ZnO Nanorods as Multifunctional SERS Substrates for Ultrasensitive Detection and Catalytic Degradation of Rhodamine B. Nanomaterials 2022, 12, 2394. [Google Scholar] [CrossRef]
- Dulal, S.; Samuel, S.R.D.; Anant, K.S.; Tapas, S.; Hongtao, Y.; Paresh, C.R. A Label-Free Gold-Nanoparticle-Based SERS Assay for Direct Cyanide Detection at the Parts-per-Trillion Level. Chem. Eur. J. 2011, 17, 8445–8451. [Google Scholar]
- Bozzini, B.; Mele, C.; Romanello, V. Time-dependent in situ SERS study of CN− adsorbed on gold. J. Electroanal. Chem. 2006, 592, 25. [Google Scholar] [CrossRef]
- Penghui, L.; Pan, L.; Xuecai, T.; Junping, W.; Yunfeng, Z.; Heyou, H.; Liangbao, Y. Assembling PVP-Au NPs as portable chip for sensitive detection of cyanide with surface-enhanced Raman spectroscopy. Anal. Bioanal. Chem. 2020, 412, 2863–2871. [Google Scholar]
- Jing, G.; Lei, G.; Jianfeng, W.; Jianlin, F.; Shunmu, W.; Fulong, L.; Jianwei, X.; Zhongqun, T. Simple and sensitive detection of cyanide using pinhole shell-isolated nanoparticle enhanced Raman spectroscopy. J. Raman Spectrosc. 2014, 45, 619–626. [Google Scholar]
- Guangqiang, L.; Weiping, C.; Lingce, K.; Guotao, D.; Yue, L.; Jingjing, W.; Zhenxing, C. Trace detection of cyanide based on SERS effect of Ag nanoplate-built hollow microsphere arrays. J. Hazard. Mat. 2013, 248–249, 435–441. [Google Scholar]
- Tran, C.D.; Ngoc, M.K.; Truc, Q.N.L.; Tuan, A.C.; Ngoc, H.N.; Van, V.L. Modification of the SERS spectrum of cyanide traces due to complex formation between cyanide and silver. Adv. Nat. Sci. Nanosci. Nanotechnol. 2018, 9, 025006. [Google Scholar]
- Siliu, T.; Melek, E.; Svetlana, S.; Henry, D. Substrates with Discretely Immobilized Silver Nanoparticles for Ultrasensitive Detection of Anions in Water Using Surface-Enhanced Raman Scattering. Langmuir 2008, 24, 4765–4771. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajamanikandan, R.; Sasikumar, K.; Kosame, S.; Ju, H. Optical Sensing of Toxic Cyanide Anions Using Noble Metal Nanomaterials. Nanomaterials 2023, 13, 290. https://doi.org/10.3390/nano13020290
Rajamanikandan R, Sasikumar K, Kosame S, Ju H. Optical Sensing of Toxic Cyanide Anions Using Noble Metal Nanomaterials. Nanomaterials. 2023; 13(2):290. https://doi.org/10.3390/nano13020290
Chicago/Turabian StyleRajamanikandan, Ramar, Kandasamy Sasikumar, Saikiran Kosame, and Heongkyu Ju. 2023. "Optical Sensing of Toxic Cyanide Anions Using Noble Metal Nanomaterials" Nanomaterials 13, no. 2: 290. https://doi.org/10.3390/nano13020290
APA StyleRajamanikandan, R., Sasikumar, K., Kosame, S., & Ju, H. (2023). Optical Sensing of Toxic Cyanide Anions Using Noble Metal Nanomaterials. Nanomaterials, 13(2), 290. https://doi.org/10.3390/nano13020290