Trilayered Gires–Tournois Resonator with Ultrasensitive Slow-Light Condition for Colorimetric Detection of Bioparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Optical Calculation
2.2. Fabrication of GT Resonator
2.3. Fixing NPs on the GT Resonator
2.4. Optical Microscope (OM) Images
2.5. SEM Images
2.6. TEM Images
2.7. Customized Circle Annotator
3. Results
3.1. Comparison of Different GT Resonators with Bi-/Trilayer Configurations
3.2. Design of Trilayered GT Resonators by Impedance Matching Based on the Transmission Line Theory
3.3. Optimal Modeling Process of the GT Resonator and Colorimetric Visualization
3.4. Visualization Process of NPs and Comparison with Various Substrates
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Altug, H.; Oh, S.-H.; Maier, S.A.; Homola, J. Advances and applications of nanophotonic biosensors. Nat. Nanotechnol. 2022, 17, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.-H.; Altug, H.; Jin, X.; Low, T.; Koester, S.J.; Ivanov, A.P.; Edel, J.B.; Avouris, P.; Strano, M.S. Nanophotonic biosensors harnessing van der Waals materials. Nat. Commun. 2021, 12, 3824. [Google Scholar] [CrossRef] [PubMed]
- Soler, M.; Calvo-Lozano, O.; Estevez, M.-C.; Lechuga, L.M. Nanophotonic biosensors: Driving personalized medicine. Opt. Photonics News 2020, 31, 24–31. [Google Scholar] [CrossRef]
- Liedberg, B.; Nylander, C.; Lundström, I. Biosensing with surface plasmon resonance—How it all started. Biosens. Bioelectron. 1995, 10, i–ix. [Google Scholar] [CrossRef] [PubMed]
- Haes, A.J.; Van Duyne, R.P. A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc. 2002, 124, 10596–10604. [Google Scholar] [CrossRef]
- Luan, E.; Shoman, H.; Ratner, D.M.; Cheung, K.C.; Chrostowski, L. Silicon photonic biosensors using label-free detection. Sensors 2018, 18, 3519. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Sanchez, M.M.; Yin, Y.; Herzer, R.; Ma, L.; Schmidt, O.G. Silicon-based integrated label-free optofluidic biosensors: Latest advances and roadmap. Adv. Mater. Technol. 2020, 5, 1901138. [Google Scholar] [CrossRef]
- Novotny, L.; Van Hulst, N. Antennas for light. Nat. Photonics 2011, 5, 83–90. [Google Scholar] [CrossRef]
- Kedem, O.; Tesler, A.B.; Vaskevich, A.; Rubinstein, I. Sensitivity and optimization of localized surface plasmon resonance transducers. ACS Nano 2011, 5, 748–760. [Google Scholar] [CrossRef]
- Bontempi, N.; Chong, K.E.; Orton, H.W.; Staude, I.; Choi, D.-Y.; Alessandri, I.; Kivshar, Y.S.; Neshev, D.N. Highly sensitive biosensors based on all-dielectric nanoresonators. Nanoscale 2017, 9, 4972–4980. [Google Scholar] [CrossRef]
- Cinel, N.A.; Bütün, S.; Özbay, E. Electron beam lithography designed silver nano-disks used as label free nano-biosensors based on localized surface plasmon resonance. Opt. Express 2012, 20, 2587–2597. [Google Scholar] [CrossRef] [Green Version]
- Virgilio, F.; Prasciolu, M.; Ugo, P.; Tormen, M. Development of electrochemical biosensors by e-beam lithography for medical diagnostics. Microelectron. Eng. 2013, 111, 320–324. [Google Scholar] [CrossRef] [Green Version]
- Chan, S.; Fauchet, P.; Li, Y.; Rothberg, L.; Miller, B. Porous silicon microcavities for biosensing applications. Phys. Status Solidi 2000, 182, 541–546. [Google Scholar] [CrossRef]
- Chan, S.; Horner, S.R.; Fauchet, P.M.; Miller, B.L. Identification of gram negative bacteria using nanoscale silicon microcavities. J. Am. Chem. Soc. 2001, 123, 11797–11798. [Google Scholar] [CrossRef]
- Chow, E.; Grot, A.; Mirkarimi, L.; Sigalas, M.; Girolami, G. Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity. Opt. Lett. 2004, 29, 1093–1095. [Google Scholar] [CrossRef]
- Ouyang, H.; Christophersen, M.; Viard, R.; Miller, B.L.; Fauchet, P.M. Macroporous silicon microcavities for macromolecule detection. Adv. Funct. Mater. 2005, 15, 1851–1859. [Google Scholar] [CrossRef]
- Lee, M.; Fauchet, P.M. Two-dimensional silicon photonic crystal based biosensing platform for protein detection. Opt. Express 2007, 15, 4530–4535. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Mohr, D.A.; Choi, H.-K.; Yoo, D.; Li, M.; Oh, S.-H. Waveguide-integrated compact plasmonic resonators for on-chip mid-infrared laser spectroscopy. Nano Lett. 2018, 18, 7601–7608. [Google Scholar] [CrossRef]
- Olanrewaju, A.; Beaugrand, M.; Yafia, M.; Juncker, D. Capillary microfluidics in microchannels: From microfluidic networks to capillaric circuits. Lab. A Chip 2018, 18, 2323–2347. [Google Scholar] [CrossRef] [Green Version]
- Bermel, P.; Luo, C.; Zeng, L.; Kimerling, L.C.; Joannopoulos, J.D. Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals. Opt. Express 2007, 15, 16986–17000. [Google Scholar] [CrossRef]
- Chutinan, A.; Kherani, N.P.; Zukotynski, S. High-efficiency photonic crystal solar cell architecture. Opt. Express 2009, 17, 8871–8878. [Google Scholar] [CrossRef] [PubMed]
- Wehrspohn, R.B.; Üpping, J. 3D photonic crystals for photon management in solar cells. J. Opt. 2012, 14, 024003. [Google Scholar] [CrossRef]
- Li, J.; Liu, Z.; Tu, Y.; Ho, S.-T.; Jung, I.W.; Ocola, L.E.; Wessels, B.W. Photonic crystal waveguide electro-optic modulator with a wide bandwidth. J. Light. Technol. 2013, 31, 1601–1607. [Google Scholar]
- Li, M.; Ling, J.; He, Y.; Javid, U.A.; Xue, S.; Lin, Q. Lithium niobate photonic-crystal electro-optic modulator. Nat. Commun. 2020, 11, 4123. [Google Scholar] [CrossRef] [PubMed]
- Rinnerbauer, V.; Lenert, A.; Bierman, D.M.; Yeng, Y.X.; Chan, W.R.; Geil, R.D.; Senkevich, J.J.; Joannopoulos, J.D.; Wang, E.N.; Soljačić, M. Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics. Adv. Energy Mater. 2014, 4, 1400334. [Google Scholar] [CrossRef]
- Heo, S.-Y.; Lee, G.J.; Kim, D.H.; Kim, Y.J.; Ishii, S.; Kim, M.S.; Seok, T.J.; Lee, B.J.; Lee, H.; Song, Y.M. A Janus emitter for passive heat release from enclosures. Sci. Adv. 2020, 6, eabb1906. [Google Scholar] [CrossRef]
- Heo, S.Y.; Kim, D.H.; Song, Y.M.; Lee, G.J. Determining the Effectiveness of Radiative Cooler-Integrated Solar Cells. Adv. Energy Mater. 2022, 12, 2103258. [Google Scholar] [CrossRef]
- Seo, D.H.; Heo, S.-Y.; Song, Y.M.; Lee, G.J. Spatially-Segmented Colored Radiative Cooler with Angle-Robustness. IEEE Photonics J. 2022, 14, 1–6. [Google Scholar] [CrossRef]
- Park, J.; Kim, S.J.; Brongersma, M.L. Condition for unity absorption in an ultrathin and highly lossy film in a Gires–Tournois interferometer configuration. Opt. Lett. 2015, 40, 1960–1963. [Google Scholar] [CrossRef]
- Dingel, B.B.; Izutsu, M. Multifunction optical filter with a Michelson–Gires–Tournois interferometer for wavelength-division-multiplexed network system applications. Opt. Lett. 1998, 23, 1099–1101. [Google Scholar] [CrossRef]
- Golubovic, B.; Austin, R.; Steiner-Shepard, M.; Reed, M.; Diddams, S.A.; Jones, D.; Van Engen, A.G. Double Gires–Tournois interferometer negative-dispersion mirrors for use in tunable mode-locked lasers. Opt. Lett. 2000, 25, 275–277. [Google Scholar] [CrossRef]
- Bykov, D.A.; Bezus, E.A.; Doskolovich, L.L. Bound states in the continuum and strong phase resonances in integrated Gires-Tournois interferometer. Nanophotonics 2020, 9, 83–92. [Google Scholar] [CrossRef]
- Kim, S.-J.; Yun, H.; Choi, S.; Yun, J.-G.; Park, K.; Jeong, S.J.; Lee, S.-Y.; Lee, Y.; Sung, J.; Choi, C. Dynamic phase-change metafilm absorber for strong designer modulation of visible light. Nanophotonics 2021, 10, 713–725. [Google Scholar] [CrossRef]
- Sobucki, K.; Śmigaj, W.; Rychły, J.; Krawczyk, M.; Gruszecki, P. Resonant subwavelength control of the phase of spin waves reflected from a Gires–Tournois interferometer. Sci. Rep. 2021, 11, 4428. [Google Scholar] [CrossRef]
- Doan, A.T.; Dao, T.D.; Ishii, S.; Nagao, T. Gires-Tournois resonators as ultra-narrowband perfect absorbers for infrared spectroscopic devices. Opt. Express 2019, 27, A725–A737. [Google Scholar] [CrossRef]
- Yoo, Y.J.; Ko, J.H.; Lee, G.J.; Kang, J.; Kim, M.S.; Stanciu, S.G.; Jeong, H.H.; Kim, D.H.; Song, Y.M. Gires–Tournois Immunoassay Platform for Label-Free Bright-Field Imaging and Facile Quantification of Bioparticles. Adv. Mater. 2022, 34, 2110003. [Google Scholar] [CrossRef]
- Lee, W.; Yoo, Y.J.; Park, J.; Ko, J.H.; Kim, Y.J.; Yun, H.; Kim, D.H.; Song, Y.M.; Kim, D.-H. Perovskite microcells fabricated using swelling-induced crack propagation for colored solar windows. Nat. Commun. 2022, 13, 1946. [Google Scholar] [CrossRef]
- Pues, H.F.; Van De Capelle, A.R. An impedance-matching technique for increasing the bandwidth of microstrip antennas. IEEE Trans. Antennas Propag. 1989, 37, 1345–1354. [Google Scholar] [CrossRef]
- Huang, J.-S.; Feichtner, T.; Biagioni, P.; Hecht, B. Impedance matching and emission properties of nanoantennas in an optical nanocircuit. Nano Lett. 2009, 9, 1897–1902. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Zhu, S.; Tian, Y.; Zhang, W.; Wang, S.; Chen, C.; Wu, L.; Yan, X. Label-free analysis of single viruses with a resolution comparable to that of electron microscopy and the throughput of flow cytometry. Angew. Chem. Int. Ed. 2016, 55, 10239–10243. [Google Scholar] [CrossRef]
- Cheng, D.K. Field and Wave Electromagnetics; Addison-Wesley: New York, NY, USA, 1989. [Google Scholar]
- Hock, K.M. Impedance matching for the multilayer medium-toward a design methodology. IEEE Trans. Microw. Theory Tech. 2003, 51, 908–914. [Google Scholar] [CrossRef]
- Hawkeye, M.M.; Brett, M.J. Glancing angle deposition: Fabrication, properties, and applications of micro-and nanostructured thin films. J. Vac. Sci. Technol. A Vac. Surf. Film. 2007, 25, 1317–1335. [Google Scholar] [CrossRef]
- Taschuk, M.T.; Hawkeye, M.M.; Brett, M. Glancing Angle Deposition. In Handbook of Deposition Technologies for Films and Coatings, 3rd ed.; Martin, P.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 621–678. [Google Scholar]
- Fairman, H.S.; Brill, M.H.; Hemmendinger, H. How the CIE 1931 color-matching functions were derived from Wright-Guild data. Color Res. Appl. 1998, 22, 11–23. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, J.; Yoo, Y.J.; Ko, J.H.; Mahmud, A.A.; Song, Y.M. Trilayered Gires–Tournois Resonator with Ultrasensitive Slow-Light Condition for Colorimetric Detection of Bioparticles. Nanomaterials 2023, 13, 319. https://doi.org/10.3390/nano13020319
Kang J, Yoo YJ, Ko JH, Mahmud AA, Song YM. Trilayered Gires–Tournois Resonator with Ultrasensitive Slow-Light Condition for Colorimetric Detection of Bioparticles. Nanomaterials. 2023; 13(2):319. https://doi.org/10.3390/nano13020319
Chicago/Turabian StyleKang, Jiwon, Young Jin Yoo, Joo Hwan Ko, Abdullah Al Mahmud, and Young Min Song. 2023. "Trilayered Gires–Tournois Resonator with Ultrasensitive Slow-Light Condition for Colorimetric Detection of Bioparticles" Nanomaterials 13, no. 2: 319. https://doi.org/10.3390/nano13020319
APA StyleKang, J., Yoo, Y. J., Ko, J. H., Mahmud, A. A., & Song, Y. M. (2023). Trilayered Gires–Tournois Resonator with Ultrasensitive Slow-Light Condition for Colorimetric Detection of Bioparticles. Nanomaterials, 13(2), 319. https://doi.org/10.3390/nano13020319