Novel Research in Low-Dimensional Systems
Funding
Acknowledgments
Conflicts of Interest
References
- Ashoori, R.C.; Stormer, H.L.; Weiner, J.S.; Pfeiffer, L.N.; Baldwin, K.W.; West, K.W. Single-electron capacitance spectroscopy of discrete quantum levels. Phys. Rev. Lett. 1992, 68, 3088. [Google Scholar] [CrossRef] [PubMed]
- Kastner, M.A. Artificial atoms. Phys. Today 1993, 46, 24. [Google Scholar] [CrossRef]
- Ciftja, O. Classical behavior of few-electron parabolic quantum dots. Physica B 2009, 404, 1629. [Google Scholar] [CrossRef]
- Kim, Y.; Han, H.; Vrejoiu, I.; Lee, W.; Hesse, D.; Alexe, M. Cross talk by extensive domain wall motion in arrays of ferroelectric nanocapacitors. Appl. Phys. Lett. 2011, 99, 202901. [Google Scholar] [CrossRef] [Green Version]
- Hong, N.H.; Raghavender, A.T.; Ciftja, O.; Phan, M.H.; Stojak, K.; Srikanth, H.; Zhang, Y.H. Ferrite nanoparticles for future heart diagnostics. Appl. Phys. A 2013, 112, 323. [Google Scholar] [CrossRef]
- Ciftja, O. Understanding electronic systems in semiconductor quantum dots. Phys. Scr. 2013, 88, 058302. [Google Scholar] [CrossRef]
- Ruiz, F.; Sun, W.D.; Pollak, F.H.; Venkatraman, C. Determination of the thermal conductivity of diamond-like nanocomposite films using a scanning thermal microscope. Appl. Phys. Lett. 1998, 73, 1802. [Google Scholar] [CrossRef]
- Unutmaz, M.A.; Unlu, M. Terahertz spoof surface plasmon polariton waveguides: A comprehensive model with experimental verification. Sci. Rep. 2019, 9, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.J.; Choi, K.; Lee, B.; Kim, Y.; Hong, B.H. Materials for flexible, stretchable electronics: Graphene and 2D materials. Annu. Rev. Mater. Res. 2015, 45, 63. [Google Scholar] [CrossRef]
- Burns, S.E.; Cain, P.; Mills, J.; Wang, J.; Sirringhaus, H. Inkjet printing of polymer thin-film transistor circuits. MRS Bull. 2011, 28, 829. [Google Scholar] [CrossRef]
- Bezryadin, A. Quantum suppression of superconductivity in nanowires. J. Phys. Cond. Mat. 2008, 20, 043202. [Google Scholar] [CrossRef] [Green Version]
- Breznay, N.; Tendulkar, M.; Zhang, L.; Lee, S.C.; Kapitulnik, A. Superconductor to weak-insulator transitions in disordered tantalum nitride films. Phys. Rev. B 2017, 96, 134522. [Google Scholar] [CrossRef] [Green Version]
- Metzke, C.; Kühnel, F.; Weber, J.; Benstetter, G. Scanning thermal microscopy of ultrathin films: Numerical studies regarding cantilever displacement, thermal contact areas, heat fluxes, and heat distribution. Nanomaterials 2021, 11, 491. [Google Scholar] [CrossRef]
- Kapcia, K.J. Charge-order on the triangular lattice: A mean-field study for the lattice S = 1/2 fermionic gas. Nanomaterials 2021, 11, 1181. [Google Scholar] [CrossRef]
- Ciftja, O. Energy stored and capacitance of a circular parallel plate nanocapacitor. Nanomaterials 2021, 11, 1255. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, L.; Ning, T.; Su, H.; Li, I.L.; Ruan, S.; Zeng, Y.-J.; Liang, H. Graphene nanoribbon gap waveguides for dispersionless and low-loss propagation with deep-subwavelength confinement. Nanomaterials 2021, 11, 1302. [Google Scholar] [CrossRef]
- Du, C.; Du, T.; Zhou, J.T.; Zhu, Y.; Jia, X.; Cheng, Y. Enhanced stability and mechanical properties of a graphene-protein nanocomposite film by a facile non-covalent self-assembly approach. Nanomaterials 2022, 12, 1181. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, X.; Wang, Y.; Guo, T.; Cao, S. Influence of ink properties on the morphology of long-wave infrared HgSe quantum dot films. Nanomaterials 2022, 12, 2180. [Google Scholar] [CrossRef] [PubMed]
- Alotabi, A.S.; Yin, Y.; Redaa, A.; Tesana, S.; Metha, G.F.; Andersson, G.G. Effect of TiO2 film thickness on the stability of Au9 clusters with a CrOx layer. Nanomaterials 2022, 12, 3218. [Google Scholar] [CrossRef] [PubMed]
- Abramkin, D.S.; Atuchin, V.V. Novel InGaSb/AlP quantum dots for non-volatile memories. Nanomaterials 2022, 12, 3794. [Google Scholar] [CrossRef] [PubMed]
- McNaughton, B.; Pinto, N.; Perali, A.; Milošević, M.V. Causes and consequences of ordering and dynamic phases of confined vortex rows in superconducting nanostripes. Nanomaterials 2022, 12, 4043. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Singh, M.; Rakshit, R.K.; Singh, S.P.; Fretto, M.; De Leo, N.; Perali, A.; Pinto, N. Complex phase-fluctuation effects correlated with granularity in superconducting NbN nanofilms. Nanomaterials 2022, 12, 4109. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciftja, O. Novel Research in Low-Dimensional Systems. Nanomaterials 2023, 13, 364. https://doi.org/10.3390/nano13020364
Ciftja O. Novel Research in Low-Dimensional Systems. Nanomaterials. 2023; 13(2):364. https://doi.org/10.3390/nano13020364
Chicago/Turabian StyleCiftja, Orion. 2023. "Novel Research in Low-Dimensional Systems" Nanomaterials 13, no. 2: 364. https://doi.org/10.3390/nano13020364
APA StyleCiftja, O. (2023). Novel Research in Low-Dimensional Systems. Nanomaterials, 13(2), 364. https://doi.org/10.3390/nano13020364