Free Convection in a Square Ternary Hybrid Nanoliquid Chamber with Linearly Heating Adjacent Walls
Abstract
:1. Introduction
2. Mathematical Analysis
3. Numerical Solution
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mahmoudi, A.H.; Shahi, M.; Shahedin, A.M.; Hemati, N. Numerical modeling of natural convection in an open cavity with two vertical thin heat sources subjected to a nanofluid. Int. Commun. Heat Mass Transf. 2011, 38, 110–118. [Google Scholar] [CrossRef]
- Cho, C.C.; Chen, C.L.; Chen, C.K. Natural convection heat transfer performance in complex-wavy-wall enclosed cavity filled with nanofluid. Int. J. Therm. Sci. 2012, 60, 255–263. [Google Scholar] [CrossRef]
- Abu-Nada, E.; Chamkha, A.J. Mixed convection flow of a nanofluid in a lid-driven cavity with a wavy wall. Int. Commun. Heat Mass Transf. 2014, 57, 36–47. [Google Scholar] [CrossRef]
- Sheremet, M.A.; Oztop, H.F.; Pop, I.; Al-Salem, K. MHD free convection in a wavy open porous tall cavity filled with nanofluids under an effect of corner heater. Int. J. Heat Mass Transf. 2016, 103, 955–964. [Google Scholar] [CrossRef]
- Mondal, P.; Mahapatra, T.R. MHD double-diffusive mixed convection and entropy generation of nanofluid in a trapezoidal cavity. Int. J. Mech. Sci. 2021, 15, 208. [Google Scholar] [CrossRef]
- Reddy, P.S.; Sreedevi, P. Buongiorno’s model nanofluid natural convection inside a square cavity with thermal radiation. Chin. J. Phys. 2021, 72, 327–344. [Google Scholar] [CrossRef]
- Xue, W.; Wang, Y.; Chen, Z.; Liu, H. An integrated model with stable numerical methods for fractured underground gas storage. J. Clean. Prod. 2023, 393, 136268. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, H.; Fang, B.; Zakin, J.; Yu, B. Heat transfer enhancement for drag-reducing surfactant fluid using photo-rheological counterion. Exp. Heat Transf. 2012, 25, 139–150. [Google Scholar] [CrossRef]
- Qi, Y.; Weavers, L.K.; Zakin, J.L. Enhancing heat-transfer ability of drag reducing surfactant solutions with ultrasonic energy. J. Non-Newton. Fluid Mech. 2003, 116, 71–93. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Cheng, Z. Direct numerical simulation of gas-liquid drag-reducing cavity flow by the VOSET method. Polymers 2019, 11, 596. [Google Scholar] [CrossRef]
- Ge, W.; Zhang, Y.; Zakin, J.L. Surfactant turbulent drag reduction in an enclosed rotating disk apparatus. Exp. Fluids 2007, 42, 459–469. [Google Scholar] [CrossRef]
- Chen, K.T.; Tsai, C.C.; Luo, W.J.; Lu, C.W.; Chen, C.H. Aspect ratio effect on multiple flow solutions in a two-sided parallel motion lid-driven cavity. J. Mech. 2015, 31, 153–160. [Google Scholar] [CrossRef]
- Luo, W.J.; Yang, R.J. Multiple fluid flow and heat transfer solutions in a two-sided lid-driven cavity. Int. J. Heat Mass Transf. 2007, 50, 2394–2405. [Google Scholar] [CrossRef]
- Mehryan, S.A.M.; Kashkooli, F.M.; Ghalambaz, M.; Chamkha, A.J. Free convection of hybrid Al2O3-Cu water nanofluid in a differentially heated porous cavity. Adv. Powder Technol. 2017, 28, 2295–2305. [Google Scholar] [CrossRef]
- Alsabery, A.I.; Hashim, I.; Hajjar, A.; Pour, M.S. Entropy generation and natural convection flow of hybrid nanofluids in a partially divided wavy cavity including solid blocks. Energies 2020, 13, 2942. [Google Scholar] [CrossRef]
- Tayebi, T.; Chamkha, A.J. Entropy generation analysis during MHD natural convection flow of hybrid nanofluid in a square cavity containing a corrugated conducting block. Int. J. Numer. Methods Heat Fluid Flow 2020, 30, 1115–1136. [Google Scholar] [CrossRef]
- Khan, Z.H.; Khan, W.A.; Hamid, M.; Liu, H. Finite element analysis of hybrid nanofluid flow and heat transfer in a split lid-driven square cavity with Y-shaped obstacle. Phys. Fluids 2020, 32, 093609. [Google Scholar] [CrossRef]
- Belhaj, S.; Ben-Beya, B. Thermal performance analysis of hybrid nanofluid natural convection in a square cavity containing an elliptical obstacle under variable magnetic field. Int. J. Numer. Methods Heat Fluid Flow 2022, 32, 1825–1860. [Google Scholar] [CrossRef]
- Rajesh, V.; Chamkha, A.J.; Sridevi, C.; Al-Mudhaf, A.F. A numerical investigation of transient MHD free convective flow of a nanofluid over a moving semi-infinite vertical cylinder. Eng. Comput. 2017, 34, 1393–1412. [Google Scholar] [CrossRef]
- Sarkar, J.; Ghosh, P.; Adil, A. A review on hybrid nanofluids: Recent research, development and applications. Renew. Sustain. Energy Rev. 2015, 43, 164–177. [Google Scholar] [CrossRef]
- Rajesh, V.; Sheremet, M.A.; Öztop, H.F. Impact of hybrid nanofluids on MHD flow and heat transfer near a vertical plate with ramped wall temperature. Case Stud. Therm. Eng. 2021, 28, 101557. [Google Scholar] [CrossRef]
- Sidik, N.A.C.; Adamu, I.M.; Jamil, M.M.; Kefayati, G.H.R.; Mamat, R.; Najafi, G. Recent progress on hybrid nanofluids in heat transfer applications: A comprehensive review. Int. Commun. Heat Mass Transf. 2016, 78, 68–79. [Google Scholar] [CrossRef]
- Dhinesh Kumar, D.; Valan Arasu, A. A comprehensive review of preparation, characterization, properties and stability of hybrid nanofluids. Renew. Sustain. Energy Rev. 2018, 81, 1669–1689. [Google Scholar] [CrossRef]
- Vemula, R.; Chamkha, A.; Mallesh, M.P. Nanofluid flow past an impulsively started vertical plate with variable surface temperature. Int. J. Numer. Methods Heat Fluid Flow 2016, 26, 328–347. [Google Scholar] [CrossRef]
- Sheremet, M.A.; Groşan, T.; Pop, I. Free convection in shallow and slender porous cavities filled by a nanofluid using Buongiorno’s model. J. Heat Transf. 2014, 136, 082501. [Google Scholar] [CrossRef]
- Sahoo, R.R. Thermo-hydraulic characteristics of radiator with various shape nanoparticle-based ternary hybrid nanofluid. Powder Technol. 2020, 370, 19–28. [Google Scholar] [CrossRef]
- Zahan, I.; Nasrin, R.; Khatun, S. Thermal performance of ternary-hybrid nanofluids through a convergent-divergent nozzle using distilled water–ethylene glycol mixtures. Int. Commun. Heat Mass Transf. 2022, 137, 106254. [Google Scholar] [CrossRef]
- Shao, Y.; Nayak, M.K.; Dogonchi, A.S.; Chamkha, A.J.; Elmasry, Y.; Galal, A.M. Ternary hybrid nanofluid natural convection within a porous prismatic enclosure with two movable hot baffles: An approach to effective cooling. Case Stud. Therm. Eng. 2022, 40, 102507. [Google Scholar] [CrossRef]
- Sneha, K.N.; Vanitha, G.P.; Mahabaleshwar, U.S.; Laroze, D. Effect of couple stress and mass transpiration on ternary hybrid nanoliquid over a stretching/shrinking sheet with heat transfer. Micromachines 2022, 13, 1694. [Google Scholar] [CrossRef]
- Hafeez, M.B.; Krawczuk, M.; Nisar, K.S.; Jamshed, W.; Pasha, A.A. A finite element analysis of thermal energy inclination based on ternary hybrid nanoparticles influenced by induced magnetic field. Int. Commun. Heat Mass Transf. 2022, 135, 106074. [Google Scholar] [CrossRef]
- Adnan; Ashraf, W. Thermal efficiency in hybrid (Al2O3-CuO/H2O) and ternary hybrid nanofluids (Al2O3-CuO-Cu/H2O) by considering the novel effects of imposed magnetic field and convective heat condition. Waves Random Complex Media 2022. [Google Scholar] [CrossRef]
- Al Oweidi, K.F.; Shahzad, F.; Jamshed, W.; Usman; Ibrahim, R.W.; El Din, E.S.M.T. Partial differential equations of entropy analysis on ternary hybridity nanofluid flow model via rotating disk with hall current and electromagnetic radiative influences. Sci. Rep. 2022, 12, 20692. [Google Scholar] [CrossRef] [PubMed]
- Puneeth, V.; Anandika, R.; Manjunatha, S.; Ijaz Khan, M.; Imran Khan, M.; Althobaiti, A. Implementation of modified Buongiorno’s model for the investigation of chemically reacting rGO-Fe3O4-TiO2-H2O ternary nanofluid jet flow in the presence of bio-active mixers. Chem. Phys. Lett. 2022, 786, 139194. [Google Scholar] [CrossRef]
- Mahmood, Z.; Khan, U. Unsteady three-dimensional nodal stagnation point flow of polymer-based ternary-hybrid nanofluid past a stretching surface with suction and heat source. Sci. Prog. 2023, 106, 003685042311527. [Google Scholar] [CrossRef]
- Turkyilmazoglu, M. Unsteady convection flow of some nanofluids past a moving vertical flat plate with heat transfer. J. Heat Transf. 2014, 136, 031704. [Google Scholar] [CrossRef]
- Khanafer, K.; Vafai, K.; Lightstone, M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transf. 2003, 46, 3639–3653. [Google Scholar] [CrossRef]
- De Vahl Davis, G. Natural convection of air in a square cavity: A bench mark numerical solution. Int. J. Numer. Methods Fluids 1983, 3, 249–264. [Google Scholar] [CrossRef]
- Sathiyamoorthy, M.; Chamkha, A.J. Natural convection flow under magnetic field in a square cavity for uniformly (or) linearly heated adjacent walls. Int. J. Numer. Methods Heat Fluid Flow 2012, 22, 677–698. [Google Scholar] [CrossRef]
Property | Ternary Nanosuspension (Cu–CuO–Al2O3/H2O) |
---|---|
Density (ρ) | |
Dynamic viscosity (μ) | |
Heat capacity (ρcp) | |
Thermal expansion coefficient (ρβ) | |
Thermal conductivity (κ) | , where and |
Properties | H2O (f) | CuO (s1) | Cu (s2) | Al2O3 (s3) |
---|---|---|---|---|
ρ (kg/m3) | 997.1 | 6320 | 8933 | 3970 |
cp (J/kgK) | 4179 | 531.8 | 385 | 765 |
β (1/K) | 21 × 10–5 | 1.8 × 10–5 | 1.67 × 10–5 | 0.85 × 10–5 |
κ (W/mK) | 0.613 | 76.5 | 401 | 40 |
(a) | ||||
Elements Number | Nodes Number | NuL | NuB | |
Extremely Coarse | 192 | 145 | 1.2465 | 1.5958 |
Extra Coarse | 354 | 250 | 1.24678 | 1.59534 |
Coarser | 540 | 361 | 1.24632 | 1.59534 |
Coarse | 1012 | 645 | 1.24626 | 1.5953 |
Normal | 1510 | 930 | 1.24636 | 1.59518 |
Fine | 2516 | 1475 | 1.24628 | 1.59514 |
Finer | 6536 | 3731 | 1.24594 | 1.59548 |
Extra fine | 16,946 | 9374 | 1.2458 | 1.59564 |
Extremely fine | 26,352 | 14,077 | 1.24578 | 1.59566 |
(b) | ||||
Elements Number | Nodes Number | NuL | NuB | |
Extremely Coarse | 192 | 145 | 2.3938 | 2.707 |
Extra Coarse | 354 | 250 | 2.7683 | 3.0627 |
Coarser | 540 | 361 | 2.9665 | 3.2585 |
Coarse | 1012 | 645 | 3.3523 | 3.6427 |
Normal | 1510 | 930 | 3.5601 | 3.8578 |
Fine | 2516 | 1475 | 3.7483 | 4.048 |
Finer | 6536 | 3731 | 4.4309 | 4.731 |
Extra fine | 16,946 | 9374 | 5.0301 | 5.3296 |
Extremely fine | 26,352 | 14,077 | 5.0311 | 5.3294 |
Grid Information | Grid Statistics |
---|---|
Number of elements | |
Quads | 1200 |
Edge elements | 600 |
Triangles | 15,746 |
Average element quality | 0.8028 |
Number of Nodes | 9374 |
Vertex elements | 4 |
CuO–Al2O3/Water | Cu–Al2O3/Water | Cu–CuO/Water | ||||
---|---|---|---|---|---|---|
Ra | NuL | NuB | NuL | NuB | NuL | NuB |
103 | 1.0689 | 1.46628 | 1.07054 | 1.47114 | 1.07014 | 1.47836 |
104 | 0.24 | 3.3962 | 0.23986 | 3.4116 | 0.23772 | 3.4418 |
105 | 0.46208 | 6.8034 | 0.4619 | 6.818 | 0.46546 | 6.8516 |
CuO–Al2O3/Water | Cu–Al2O3/Water | Cu–CuO/Water | ||||
---|---|---|---|---|---|---|
Ra | NuL | NuB | NuL | NuB | NuL | NuB |
103 | 4.4442 | 4.7838 | 4.4544 | 4.7968 | 4.463 | 4.8119 |
104 | 4.371 | 6.2361 | 4.3833 | 6.2559 | 4.3984 | 6.2847 |
105 | 5.4299 | 8.612 | 5.4429 | 8.6425 | 5.4635 | 8.6863 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajesh, V.; Sheremet, M. Free Convection in a Square Ternary Hybrid Nanoliquid Chamber with Linearly Heating Adjacent Walls. Nanomaterials 2023, 13, 2860. https://doi.org/10.3390/nano13212860
Rajesh V, Sheremet M. Free Convection in a Square Ternary Hybrid Nanoliquid Chamber with Linearly Heating Adjacent Walls. Nanomaterials. 2023; 13(21):2860. https://doi.org/10.3390/nano13212860
Chicago/Turabian StyleRajesh, Vemula, and Mikhail Sheremet. 2023. "Free Convection in a Square Ternary Hybrid Nanoliquid Chamber with Linearly Heating Adjacent Walls" Nanomaterials 13, no. 21: 2860. https://doi.org/10.3390/nano13212860
APA StyleRajesh, V., & Sheremet, M. (2023). Free Convection in a Square Ternary Hybrid Nanoliquid Chamber with Linearly Heating Adjacent Walls. Nanomaterials, 13(21), 2860. https://doi.org/10.3390/nano13212860