Enhanced Catalytic Performance of Ag NP/0.95AgNbO3-0.05LiTaO3 Heterojunction from the Combination of Surface Plasma Resonance Effect and Piezoelectric Effect Using Facile Mechanical Milling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Samples
2.3. Characterization
2.4. Piezo-Photocatalytic Characterization
2.5. Detection of Active Species in Catalysis
2.6. Electrochemical Performance Test
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mishra, S.; Cheng, L.; Maiti, A. The utilization of agro-biomass/byproducts for effective bio-removal of dyes from dyeing wastewater: A comprehensive review. J. Environ. Chem. Eng. 2021, 9, 104901. [Google Scholar] [CrossRef]
- Uddin, F. Environmental hazard in textile dyeing wastewater from local textile industry. Cellulose 2021, 28, 10715–10739. [Google Scholar] [CrossRef]
- Liang, J.; Ning, X.; Sun, J.; Song, J.; Hong, Y.; Cai, H. An integrated permanganate and ozone process for the treatment of textile dyeing wastewater: Efficiency and mechanism. J. Clean. Prod. 2018, 204, 12–19. [Google Scholar] [CrossRef]
- Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M. Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid. Interface Sci. 2014, 209, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Wu, N. Plasmonic metal-semiconductor photocatalysts and photoelectrochemical cells: A review. Nanoscale 2018, 10, 2679–2696. [Google Scholar] [CrossRef]
- Li, L.; Salvador, P.A.; Rohrer, G.S. Photocatalysts with internal electric fields. Nanoscale 2014, 6, 24–42. [Google Scholar] [CrossRef]
- Zhang, L.; Mohamed, H.H.; Dillert, R.; Bahnemann, D. Kinetics and mechanisms of charge transfer processes in photocatalytic systems: A review. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13, 263–276. [Google Scholar] [CrossRef]
- Yu, C.; He, J.; Tan, M.; Hou, Y.; Zeng, H.; Liu, C.; Meng, H.; Su, Y.; Qiao, L.; Lookman, T.; et al. Selective Enhancement of Photo-Piezocatalytic Performance in BaTiO3 Via heterovalent Ion Doping. Adv. Funct. Mater. 2022, 32, 2209365. [Google Scholar] [CrossRef]
- Chen, C.; Ma, W.; Zhao, J. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem. Soc. Rev. 2010, 39, 4206–4219. [Google Scholar] [CrossRef] [PubMed]
- Bansal, J.; Hafiz, A.K.; Sharma, S.N. Photoreduction of Dye with Noble Metal Gold Permeated with Metal Oxide Titania. J. Nanosci. Nanotechnol. 2020, 20, 3896–3901. [Google Scholar] [CrossRef]
- Liu, Q.; Zhai, D.; Xiao, Z.; Tang, C.; Sun, Q.; Bowen, C.R.; Luo, H.; Zhang, D. Piezo-photoelectronic coupling effect of BaTiO3@TiO2 nanowires for highly concentrated dye degradation. Nano Energy 2022, 92, 106702. [Google Scholar] [CrossRef]
- Deng, F.; Zhang, Q.; Yang, L.; Luo, X.; Wang, A.; Luo, S.; Dionysiou, D.D. Visible-light-responsive graphene-functionalized Bi-bridge Z-scheme black BiOCl/Bi2O3 heterojunction with oxygen vacancy and multiple charge transfer channels for efficient photocatalytic degradation of 2-nitrophenol and industrial wastewater treatment. Appl. Catal. B Environ. 2018, 238, 61–69. [Google Scholar] [CrossRef]
- Wang, P.; Zhong, S.; Lin, M.; Lin, C.; Lin, T.; Gao, M.; Zhao, C.; Li, X.; Wu, X. Signally enhanced piezo-photocatalysis of Bi0.5Na0.5TiO3/MWCNTs composite for degradation of rhodamine B. Chemosphere 2022, 308, 136596. [Google Scholar] [CrossRef]
- Xue, X.; Zang, W.; Deng, P.; Wang, Q.; Xing, L.; Zhang, Y.; Wang, Z.L. Piezo-potential enhanced photocatalytic degradation of organic dye using ZnO nanowires. Nano Energy 2015, 13, 414–422. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, Q.; Wang, H.; Rong, J.; Lei, E.; Dai, Y. Enhanced catalytic performance of Ag2O/BaTiO3 heterostructure microspheres by the piezo/pyro-phototronic synergistic effect. Nano Energy 2020, 73, 104783. [Google Scholar] [CrossRef]
- Hong, D.; Zang, W.; Guo, X.; Fu, Y.; He, H.; Sun, J.; Xing, L.; Liu, B.; Xue, X. High Piezo-photocatalytic Efficiency of CuS/ZnO Nanowires Using Both Solar and Mechanical Energy for Degrading Organic Dye. ACS Appl. Mater. Interfaces 2016, 8, 21302–21314. [Google Scholar] [CrossRef]
- Lin, L.; Feng, X.; Lan, D.; Chen, Y.; Zhong, Q.; Liu, C.; Cheng, Y.; Qi, R.; Ge, J.; Yu, C.; et al. Coupling Effect of Au Nanoparticles with the Oxygen Vacancies of TiO2–x for Enhanced Charge Transfer. J. Phys. Chem. C 2020, 124, 23823–23831. [Google Scholar] [CrossRef]
- Zhou, X.; Yan, F.; Wu, S.; Shen, B.; Zeng, H.; Zhai, J. Remarkable Piezophoto Coupling Catalysis Behavior of BiOX/BaTiO3 (X = Cl, Br, Cl(0.166) Br(0.834)) Piezoelectric Composites. Small 2020, 16, e2001573. [Google Scholar] [CrossRef]
- Dong, W.; Xiao, H.; Jia, Y.; Chen, L.; Geng, H.; Bakhtiar, S.U.H.; Fu, Q.; Guo, Y. Engineering the Defects and Microstructures in Ferroelectrics for Enhanced/Novel Properties: An Emerging Way to Cope with Energy Crisis and Environmental Pollution. Adv. Sci. 2022, 9, e2105368. [Google Scholar] [CrossRef] [PubMed]
- You, D.; Liu, L.; Yang, Z.; Xing, X.; Li, K.; Mai, W.; Guo, T.; Xiao, G.; Xu, C. Polarization-induced internal electric field to manipulate piezo-photocatalytic and ferro-photoelectrochemical performance in bismuth ferrite nanofibers. Nano Energy 2022, 93, 106852. [Google Scholar] [CrossRef]
- Yuan, B.; Wu, J.; Qin, N.; Lin, E.; Kang, Z.; Bao, D. Sm-doped Pb(Mg1/3Nb2/3)O3-xPbTiO3 piezocatalyst: Exploring the relationship between piezoelectric property and piezocatalytic activity. Appl. Mater. Today 2019, 17, 183–192. [Google Scholar] [CrossRef]
- Zhang, A.; Liu, Z.; Xie, B.; Lu, J.; Guo, K.; Ke, S.; Shu, L.; Fan, H. Vibration catalysis of eco-friendly Na0.5K0.5NbO3-based piezoelectric: An efficient phase boundary catalyst. Appl. Catal. B Environ. 2020, 279, 119353. [Google Scholar] [CrossRef]
- Li, L.; Ma, Y.; Chen, G.; Wang, J.; Wang, C. Oxygen-vacancy-enhanced piezo-photocatalytic performance of AgNbO3. Scr. Mater. 2022, 206, 114234. [Google Scholar] [CrossRef]
- Zhao, W.; Ai, Z.; Zhu, X.; Zhang, M.; Shi, Q.; Dai, J. Visible-light-driven photocatalytic H2 evolution from water splitting with band structure tunable solid solution (AgNbO3)1−x(SrTiO3)x. Int. J. Hydrogen Energy 2014, 39, 7705–7712. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, S.; Jia, Y.; Tie, M.; Fang, D.; Zhang, Z.; Wang, J. Fabrication of novel immobilized and forced Z-scheme Ag|AgNbO3/Ag/Er3+:YAlO3@Nb2O5 nanocomposite film photocatalyst for enhanced degradation of auramine O with synchronous evolution of pure hydrogen. Sep. Purif. Technol. 2022, 288, 120658. [Google Scholar] [CrossRef]
- Wang, C.; Yan, J.; Wu, X.; Song, Y.; Cai, G.; Xu, H.; Zhu, J.; Li, H. Synthesis and characterization of AgBr/AgNbO3 composite with enhanced visible-light photocatalytic activity. Appl. Surf. Sci. 2013, 273, 159–166. [Google Scholar] [CrossRef]
- Yang, M.; Pu, Y.; Wang, W.; Li, J.; Guo, X.; Shi, R.; Shi, Y. Highly efficient Ag2O/AgNbO3 p-n heterojunction photocatalysts with enhanced visible-light responsive activity. J. Alloys Compd. 2019, 811, 151831. [Google Scholar] [CrossRef]
- Fu, D.; Itoh, M.; Koshihara, S.-Y. Dielectric, ferroelectric, and piezoelectric behaviors of AgNbO3–KNbO3 solid solution. J. Appl. Phys. 2009, 106, 104104. [Google Scholar] [CrossRef]
- Song, A.; Wang, J.; Song, J.; Zhang, J.; Li, Z.; Zhao, L. Antiferroelectricity and ferroelectricity in A-site doped silver niobate lead-free ceramics. J. Eur. Ceram. Soc. 2021, 41, 1236–1243. [Google Scholar] [CrossRef]
- Li, S.; Nie, H.; Wang, G.; Liu, N.; Zhou, M.; Cao, F.; Dong, X. Novel AgNbO3-based lead-free ceramics featuring excellent pyroelectric properties for infrared detecting and energy-harvesting applications via antiferroelectric/ferroelectric phase-boundary design. J. Mater. Chem. C 2019, 7, 4403–4414. [Google Scholar] [CrossRef]
- Wang, F.; Song, J.; Wang, T.; Du, C.; Su, Y. Photosynergy of Ag In Situ Anchored on AgNb1–xTaxO3 Solid Solutions as an Efficient and Durable Catalyst toward Nitrobenzene Reduction: Uncovering the Relevance of the Electronic Structure, Active Sites, and Catalytic Activity. J. Phys. Chem. C 2020, 125, 385–395. [Google Scholar] [CrossRef]
- Li, S.; Zhao, Z.; Liu, M.; Liu, X.; Huang, W.; Sun, S.; Jiang, Y.; Liu, Y.; Zhang, J.; Zhang, Z. Remarkably enhanced photocatalytic performance of Au/AgNbO3 heterostructures by coupling piezotronic with plasmonic effects. Nano Energy 2022, 95, 107031. [Google Scholar] [CrossRef]
- Lu, Y.; Shen, Q.; Yu, Q.; Zhang, F.; Li, G.; Zhang, W. Photoinduced In Situ Growth of Ag Nanoparticles on AgNbO3. J. Phys. Chem. C 2016, 120, 28712–28716. [Google Scholar] [CrossRef]
- Wang, P.; Huang, B.; Qin, X.; Zhang, X.; Dai, Y.; Wei, J.; Whangbo, M.H. Ag@AgCl: A highly efficient and stable photocatalyst active under visible light. Angew. Chem. Int. Ed. Engl. 2008, 47, 7931–7933. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Luo, N.; Zeng, D.; Xu, C.; Ma, L.; Luo, G.; Qian, Y.; Feng, Q.; Chen, X.; Hu, C.; et al. Ferroelectricity and Schottky Heterojunction Engineering in AgNbO3: A Simultaneous Way of Boosting Piezo-photocatalytic Activity. ACS Appl. Mater. Interfaces 2022, 14, 22313–22323. [Google Scholar] [CrossRef] [PubMed]
- Lin, E.; Kang, Z.; Wu, J.; Huang, R.; Qin, N.; Bao, D. BaTiO3 nanocubes/cuboids with selectively deposited Ag nanoparticles: Efficient piezocatalytic degradation and mechanism. Appl. Catal. B Environ. 2021, 285, 119823. [Google Scholar] [CrossRef]
- Lin, E.; Wu, J.; Qin, N.; Yuan, B.; Bao, D. Silver modified barium titanate as a highly efficient piezocatalyst. Catal. Sci. Technol. 2018, 8, 4788–4796. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, H.; Kong, F.; Wang, M. Piezocatalytic oxidation of 5-hydroxymethylfurfural to 5-formyl-2-furancarboxylic acid over Pt decorated hydroxyapatite. Appl. Catal. B Environ. 2022, 309, 121281. [Google Scholar] [CrossRef]
- Yu, F.; Tian, F.; Zou, H.; Ye, Z.; Peng, C.; Huang, J.; Zheng, Y.; Zhang, Y.; Yang, Y.; Wei, X.; et al. ZnO/biochar nanocomposites via solvent free ball milling for enhanced adsorption and photocatalytic degradation of methylene blue. J. Hazard. Mater. 2021, 415, 125511. [Google Scholar] [CrossRef] [PubMed]
- Aysin, B.; Ozturk, A.; Park, J. Silver-loaded TiO2 powders prepared through mechanical ball milling. Ceram. Int. 2013, 39, 7119–7126. [Google Scholar] [CrossRef]
- He, T.; Cao, Z.; Li, G.; Jia, Y.; Peng, B. High efficiently harvesting visible light and vibration energy in (1−x)AgNbO3–xLiTaO3 solid solution around antiferroelectric–ferroelectric phase boundary for dye degradation. J. Adv. Ceram. 2022, 11, 1641–1653. [Google Scholar] [CrossRef]
- Zhang, Z.; Ji, Y.; Li, J.; Zhong, Z.; Su, F. Synergistic effect in bimetallic copper–silver (CuxAg) nanoparticles enhances silicon conversion in Rochow reaction. RSC Adv. 2015, 5, 54364–54371. [Google Scholar] [CrossRef]
- Lan, J.; Zhou, X.; Liu, G.; Yu, J.; Zhang, J.; Zhi, L.; Nie, G. Enhancing photocatalytic activity of one-dimensional KNbO3 nanowires by Au nanoparticles under ultraviolet and visible-light. Nanoscale 2011, 3, 5161–5167. [Google Scholar] [CrossRef]
- Wan, J.; Liu, E.; Fan, J.; Hu, X.; Sun, L.; Tang, C.; Yin, Y.; Li, H.; Hu, Y. In-situ synthesis of plasmonic Ag/Ag3PO4 tetrahedron with exposed {111} facets for high visible-light photocatalytic activity and stability. Ceram. Int. 2015, 41, 6933–6940. [Google Scholar] [CrossRef]
- Xiang, D.; Liu, Z.; Wu, M.; Liu, H.; Zhang, X.; Wang, Z.; Wang, Z.L.; Li, L. Enhanced Piezo-Photoelectric Catalysis with Oriented Carrier Migration in Asymmetric Au-ZnO Nanorod Array. Small 2020, 16, e1907603. [Google Scholar] [CrossRef]
- Yang, L.; Liu, J.; Chang, H.; Tang, S. Enhancing the visible-light-induced photocatalytic activity of AgNbO3 by loading Ag@AgCl nanoparticles. RSC Adv. 2015, 5, 59970–59975. [Google Scholar] [CrossRef]
- Konstantinou, I.K.; Albanis, T.A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations. Appl. Catal. B Environ. 2004, 49, 1–14. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, H.; Wang, X.; Yuan, G. Synergetic effect of piezoelectricity and Ag deposition on photocatalytic performance of barium titanate perovskite. Sol. Energy 2021, 224, 455–461. [Google Scholar] [CrossRef]
- Xu, S.; Guo, L.; Sun, Q.; Wang, Z.L. Piezotronic Effect Enhanced Plasmonic Photocatalysis by AuNPs/BaTiO3 Heterostructures. Adv. Funct. Mater. 2019, 29, 1808737. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, Q.; Zhai, D.; Xue, G.; Luo, H.; Zhang, D. Excellent catalytic performance of molten-salt-synthesized Bi0.5Na0.5TiO3 nanorods by the piezo-phototronic coupling effect. Nano Energy 2021, 84, 105936. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, B.-p.; Li, S.; Huang, Z.; Yang, C.; Wang, H. Enhanced photocatalytic activity in Ag-nanoparticle-dispersed BaTiO3 composite thin films: Role of charge transfer. J. Adv. Ceram. 2017, 6, 1–10. [Google Scholar] [CrossRef]
- Zhang, D.; Li, J.; Wang, Q.; Wu, Q. High {001} facets dominated BiOBr lamellas: Facile hydrolysis preparation and selective visible-light photocatalytic activity. J. Mater. Chem. A 2013, 1, 8622–8629. [Google Scholar] [CrossRef]
- Zheng, J.; Lei, Z. Incorporation of CoO nanoparticles in 3D marigold flower-like hierarchical architecture MnCo2O4 for highly boosting solar light photo-oxidation and reduction ability. Appl. Catal. B Environ. 2018, 237, 1–8. [Google Scholar] [CrossRef]
- Pan, H.; Heagy, M.D. Photons to Formate: A Review on Photocatalytic Reduction of CO2 to Formic Acid. Nanomaterials 2020, 10, 2422. [Google Scholar] [CrossRef] [PubMed]
- Zong, X.; Yan, H.; Wu, G.; Ma, G.; Wen, F.; Wang, L.; Li, C. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 2008, 130, 7176–7177. [Google Scholar] [CrossRef]
- Jang, J.S.; Kim, H.G.; Lee, J.S. Heterojunction semiconductors: A strategy to develop efficient photocatalytic materials for visible light water splitting. Catal. Today 2012, 185, 270–277. [Google Scholar] [CrossRef]
- Chen, H.; Leng, W.; Xu, Y. Enhanced visible-light photoactivity of CuWO4 through a surface-deposited CuO. J. Phys. Chem. C 2014, 118, 9982–9989. [Google Scholar] [CrossRef]
- Pinaud, B.A.; Chen, Z.; Abram, D.N.; Jaramillo, T.F. Thin films of sodium birnessite-type MnO2: Optical properties, electronic band structure, and solar photoelectrochemistry. J. Phys. Chem. C 2011, 115, 11830–11838. [Google Scholar] [CrossRef]
- Wen, X.-J.; Zhang, C.; Niu, C.-G.; Zhang, L.; Zeng, G.-M.; Zhang, X.-G. Highly enhanced visible light photocatalytic activity of CeO2 through fabricating a novel p–n junction BiOBr/CeO2. Catal. Commun. 2017, 90, 51–55. [Google Scholar] [CrossRef]
- Yu, Z.; Zhan, B.; Ge, B.; Zhu, Y.; Dai, Y.; Zhou, G.; Yu, F.; Wang, P.; Huang, B.; Zhan, J. Synthesis of high efficient and stable plasmonic photocatalyst Ag/AgNbO3 with specific exposed crystal-facets and intimate heterogeneous interface via combustion route. Appl. Surf. Sci. 2019, 488, 485–493. [Google Scholar] [CrossRef]
- Li, G.; Bai, Y.; Zhang, W.F.; Zhang, H. Enhanced visible light photocatalytic properties of AgNbO3/AgSbO3 composites. Mater. Chem. Phys. 2013, 139, 1009–1013. [Google Scholar] [CrossRef]
- Wu, W.; Liang, S.; Chen, Y.; Shen, L.; Yuan, R.; Wu, L. Mechanism and improvement of the visible light photocatalysis of organic pollutants over microcrystalline AgNbO3 prepared by a sol–gel method. Mater. Res. Bull. 2013, 48, 1618–1626. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, C.; Kei, C.; Hsueh, Y.; Cho, W.; Perng, T. Photocatalysis of Ag-Loaded TiO2 Nanotube Arrays Formed by Atomic Layer Deposition. J. Phys. Chem. C 2011, 115, 9498–9502. [Google Scholar] [CrossRef]
- Li, S.; Zhao, Z.; Zhao, J.; Zhang, Z.; Li, X.; Zhang, J. Recent Advances of Ferro-, Piezo-, and Pyroelectric Nanomaterials for Catalytic Applications. ACS Appl. Nano Mater. 2020, 3, 1063–1079. [Google Scholar] [CrossRef]
- Chen, L.; Dai, X.; Li, X.; Wang, J.; Chen, H.; Hu, X.; Lin, H.; He, Y.; Wu, Y.; Fan, M. A novel Bi2S3/KTa0.75Nb0.25O3 nanocomposite with high efficiency for photocatalytic and piezocatalytic N2 fixation. J. Mater. Chem. A 2021, 9, 13344–13354. [Google Scholar] [CrossRef]
Ferroelectric Materials | Pollutants | Excitation Source | Concentration of Pollutant | k × 10−3 (min−1) | Ref. |
---|---|---|---|---|---|
Ag/AgNbO3 | RhB | Visible light | 5.0 mg/L | 44.70 | [60] |
Ag2O/AgNbO3 | RhB | Visible light | 5.0 mg/L | 30.56 | [27] |
AgNbO3/AgSbO3 | RhB | Visible light | 2.5 mg/L | 46.66 | [61] |
0.05-ANLT | RhB | Visible light + 300 W ultrsonic | 5.0 mg/L | 26.66 | [41] |
t-Ag/0.05-ANLT | RhB | Visible light + 300 W ultrsonic | 5.0 mg/L | 84.34 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, T.; He, T.; Cao, Z.; Xing, P.; Teng, X.; Li, G. Enhanced Catalytic Performance of Ag NP/0.95AgNbO3-0.05LiTaO3 Heterojunction from the Combination of Surface Plasma Resonance Effect and Piezoelectric Effect Using Facile Mechanical Milling. Nanomaterials 2023, 13, 2972. https://doi.org/10.3390/nano13222972
Ren T, He T, Cao Z, Xing P, Teng X, Li G. Enhanced Catalytic Performance of Ag NP/0.95AgNbO3-0.05LiTaO3 Heterojunction from the Combination of Surface Plasma Resonance Effect and Piezoelectric Effect Using Facile Mechanical Milling. Nanomaterials. 2023; 13(22):2972. https://doi.org/10.3390/nano13222972
Chicago/Turabian StyleRen, Tianxiang, Tufeng He, Zhenzhu Cao, Pengyue Xing, Xinglong Teng, and Guorong Li. 2023. "Enhanced Catalytic Performance of Ag NP/0.95AgNbO3-0.05LiTaO3 Heterojunction from the Combination of Surface Plasma Resonance Effect and Piezoelectric Effect Using Facile Mechanical Milling" Nanomaterials 13, no. 22: 2972. https://doi.org/10.3390/nano13222972
APA StyleRen, T., He, T., Cao, Z., Xing, P., Teng, X., & Li, G. (2023). Enhanced Catalytic Performance of Ag NP/0.95AgNbO3-0.05LiTaO3 Heterojunction from the Combination of Surface Plasma Resonance Effect and Piezoelectric Effect Using Facile Mechanical Milling. Nanomaterials, 13(22), 2972. https://doi.org/10.3390/nano13222972