Electrosprayed Nanoparticles Containing Mangiferin-Rich Extract from Mango Leaves for Cosmeceutical Application
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Mango Leaf Extraction
2.3. Characterization of the MRE and pMRE
2.3.1. UV–Vis Spectrophotometer
2.3.2. Fourier Transform Infrared Spectrometer (FT-IR)
2.3.3. Differential Scanning Calorimetry (DSC)
2.4. Standardization of the MRE
2.5. Bioactivities Assessment of the MRE
2.5.1. Antioxidant Activity
DPPH Radical Scavenging Assay
Lipid Peroxidation Inhibition Assay
2.5.2. Antiaging Activity
Anticollagenase Assay
Antihyaluronidase Assay
Antielastase Assay
2.5.3. Antityrosinase Assay
2.6. Proteomics Analysis of the MRE
2.6.1. Cell Preparation and Protein Extraction
2.6.2. LC-MS/MS Analysis
2.6.3. Protein Identification
2.7. Preparation of MRE-Loaded Nanoparticles (MNPs) by the Electrospraying Technique
2.8. Irritation Study
2.9. Preparation of the Formulation Containing MNPs
2.10. Skin-Retention Study
2.11. Statistical Analysis
3. Results and Discussion
3.1. MRE Yield and Characterization
3.2. Standardization of the MRE
3.3. Bioactivities Assessment of the MRE
3.3.1. Antioxidant Activity
3.3.2. Anticollagenase Activity
3.3.3. Antihyaluronidase Activity
3.3.4. Antielastase Activity
3.3.5. Antityrosinase Activity
3.4. Proteomics Analysis of the MRE
3.5. Evaluation of MNPs
3.6. Irritation Study
3.7. Preparation and Evaluation of the Emulsion Gel Containing MRE-Loaded Nanoparticles
3.8. Skin-Retention Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MRE | Mangiferin-rich extract |
pMRE | Purified mangiferin-rich extract |
FT-IR | Fourier transform infrared spectrometer |
DSC | Differential scanning calorimeter |
EGCG | Epigallocatechin gallate |
STD | Standard mangiferin |
AA | Ascorbic acid |
TA | Tannic acid |
MNPs | MRE-loaded nanoparticles |
HPLC | High-performance liquid chromatography |
SEM | Scanning electron microscopy |
PDI | Polydispersity index |
IPA | Isopropyl alcohol |
HET-CAM | Hen’s egg chorioallantoic membrane |
IS | Irritation score |
References
- Trade Policy and Strategy Office. Regional Economic Report of April 2021; Trade Policy and Strategy Office: Nonthaburi, Thailand, 2021; p. 2565.
- Ediriweera, M.K.; Tennekoon, K.H.; Samarakoon, S.R. A Review on Ethnopharmacological Applications, Pharmacological Activities, and Bioactive Compounds of Mangifera indica (Mango). Evid. Based Complement. Altern. Med. 2017, 2017, 6949835. [Google Scholar] [CrossRef]
- Shah, K.A.; Patel, M.B.; Patel, R.J.; Parmar, P.K. Mangifera indica (mango). Pharmacogn. Rev. 2010, 4, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Saurabh, V.; Tomar, M.; Hasan, M.; Changan, S.; Sasi, M.; Maheshwari, C.; Prajapati, U.; Singh, S.; Prajapat, R.K.; et al. Mango (Mangifera indica L.) Leaves: Nutritional Composition, Phytochemical Profile, and Health-Promoting Bioactivities. Antioxidants 2021, 10, 299. [Google Scholar] [CrossRef]
- Ajila, C.M.; Bhat, S.G.; Prasada Rao, U.J.S. Valuable components of raw and ripe peels from two Indian mango varieties. Food Chem. 2007, 102, 1006–1011. [Google Scholar] [CrossRef]
- Tacias-Pascacio, V.G.; Castañeda-Valbuena, D.; Fernandez-Lafuente, R.; Berenguer-Murcia, Á.; Meza-Gordillo, R.; Gutiérrez, L.-F.; Pacheco, N.; Cuevas-Bernardino, J.C.; Ayora-Talavera, T. Phenolic compounds in mango fruit: A review. J. Food Meas. Charact. 2022, 16, 619–636. [Google Scholar] [CrossRef]
- Telang, M.; Dhulap, S.; Mandhare, A.; Hirwani, R. Therapeutic and cosmetic applications of mangiferin: A patent review. Expert Opin. Ther. Pat. 2013, 23, 1561–1580. [Google Scholar] [CrossRef] [PubMed]
- Masibo, M.; He, Q. Major Mango Polyphenols and Their Potential Significance to Human Health. Compr. Rev. Food Sci. Food Saf. 2008, 7, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Arshad, M.S.; Butt, M.S.; Kwon, J.H.; Arshad, M.U.; Sultan, M.T. Mangiferin: A natural miracle bioactive compound against lifestyle related disorders. Lipids Health Dis. 2017, 16, 84. [Google Scholar] [CrossRef] [PubMed]
- Dar, A.; Faizi, S.; Naqvi, S.; Roome, T.; Zikr-ur-Rehman, S.; Ali, M.; Firdous, S.; Moin, S.T. Analgesic and antioxidant activity of mangiferin and its derivatives: The structure activity relationship. Biol. Pharm. Bull. 2005, 28, 596–600. [Google Scholar] [CrossRef]
- Jagetia, G.C.; Venkatesha, V.A. Effect of mangiferin on radiation-induced micronucleus formation in cultured human peripheral blood lymphocytes. Environ. Mol. Mutagen. 2005, 46, 12–21. [Google Scholar] [CrossRef]
- Kim, H.-S.; Song, J.H.; Youn, U.J.; Hyun, J.W.; Jeong, W.S.; Lee, M.Y.; Choi, H.J.; Lee, H.K.; Chae, S. Inhibition of UVB-induced wrinkle formation and MMP-9 expression by mangiferin isolated from Anemarrhena asphodeloides. Eur. J. Pharmacol. 2012, 689, 38–44. [Google Scholar] [CrossRef]
- Wang, J.; Jansen, J.A.; Yang, F. Electrospraying: Possibilities and Challenges of Engineering Carriers for Biomedical Applications—A Mini Review. Front. Chem. 2019, 7, 258. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Zhang, Z. Brinzolamide loaded core-shell nanoparticles for enhanced coronial penetration in the treatment of glaucoma. J. Appl. Biomater. Funct. Mater. 2020, 18, 2280800020942712. [Google Scholar] [CrossRef] [PubMed]
- Al-Amrani, S.; Al-Jabri, Z.; Al-Zaabi, A.; Alshekaili, J.; Al-Khabori, M. Proteomics: Concepts and applications in human medicine. World J. Biol. Chem. 2021, 12, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Vo, T.H.T.; Nguyen, T.D.; Nguyen, Q.H.; Ushakova, N.A. Extraction of Mangiferin from the Leaves of the Mango Tree Mangifera indica and Evaluation of Its Biological Activity in Terms of Blockade of α-Glucosidase. Pharm. Chem. J. 2017, 51, 806–810. [Google Scholar] [CrossRef]
- Chaiyana, W.; Sirithunyalug, J.; Somwongin, S.; Punyoyai, C.; Laothaweerungsawat, N.; Marsup, P.; Neimkhum, W.; Yawootti, A. Enhancement of the Antioxidant, Anti-Tyrosinase, and Anti-Hyaluronidase Activity of Morus alba L. Leaf Extract by Pulsed Electric Field Extraction. Molecules 2020, 25, 2212. [Google Scholar] [CrossRef]
- Theansungnoen, T.; Nitthikan, N.; Wilai, M.; Chaiwut, P.; Kiattisin, K.; Intharuksa, A. Phytochemical Analysis and Antioxidant, Antimicrobial, and Antiaging Activities of Ethanolic Seed Extracts of Four Mucuna Species. Cosmetics 2022, 9, 14. [Google Scholar] [CrossRef]
- Nguyen, D.N.; Clasen, C.; Van den Mooter, G. Encapsulating darunavir nanocrystals within Eudragit L100 using coaxial electrospraying. Eur. J. Pharm. Biopharm. 2017, 113, 50–59. [Google Scholar] [CrossRef]
- Yeerong, K.; Sriyab, S.; Somwongin, S.; Punyoyai, C.; Chantawannakul, P.; Anuchapreeda, S.; Prommaban, A.; Chaiyana, W. Skin irritation and potential antioxidant, anti-collagenase, and anti-elastase activities of edible insect extracts. Sci. Rep. 2021, 11, 22954. [Google Scholar] [CrossRef]
- Nguyen, T.A. Vietnamese Pharmacopoeia; Vietnamese Pharmacopoeia Commission: Hanoi, Vietnam, 2005. [Google Scholar]
- Khurana, R.K.; Kaur, R.; Kaur, M.; Kaur, R.; Kaur, J.; Kaur, H.; Singh, B. Exploring and validating physicochemical properties of mangiferin through GastroPlus® software. Future Sci. OA 2017, 3, Fso167. [Google Scholar] [CrossRef]
- Lizárraga-Velázquez, C.E.; Hernández, C.; González-Aguilar, G.A.; Heredia, J.B. Effect of hydrophilic and lipophilic antioxidants from mango peel (Mangifera indica L. cv. Ataulfo) on lipid peroxidation in fish oil. CyTA J. Food 2018, 16, 1095–1101. [Google Scholar] [CrossRef]
- Stohs, S.; Swaroop, A.; Moriyama, H.; Bagchi, M.; Ahmad, T.; Bagchi, D. A Review on Antioxidant, Anti-Inflammatory and Gastroprotective Abilities of Mango (Magnifera indica) Leaf Extract and Mangiferin. J. Nutr. Health Sci. 2018, 5, 303. [Google Scholar]
- Ochocka, R.; Hering, A.; Stefanowicz–Hajduk, J.; Cal, K.; Barańska, H. The effect of mangiferin on skin: Penetration, permeation and inhibition of ECM enzymes. PLoS ONE 2017, 12, e0181542. [Google Scholar] [CrossRef]
- Hering, A.; Stefanowicz-Hajduk, J.; Gucwa, M.; Wielgomas, B.; Ochocka, J.R. Photoprotection and Antiaging Activity of Extracts from Honeybush (Cyclopia sp.)—In Vitro Wound Healing and Inhibition of the Skin Extracellular Matrix Enzymes: Tyrosinase, Collagenase, Elastase and Hyaluronidase. Pharmaceutics 2023, 15, 1542. [Google Scholar] [CrossRef]
- Efendi, M.R.; Bakhtiar, A.; Rusdi, M.S.; Putra, D.P. Simplified isolation method of mangiferin from Mangifera indica L. leaves and evaluation of tyrosinase inhibitory activity. Asia-Pac. J. Sci. Technol. 2023, 28, APST-28-06-12. [Google Scholar]
- Canty, E.G.; Starborg, T.; Lu, Y.; Humphries, S.M.; Holmes, D.F.; Meadows, R.S.; Huffman, A.; O’Toole, E.T.; Kadler, K.E. Actin filaments are required for fibripositor-mediated collagen fibril alignment in tendon. J. Biol. Chem. 2006, 281, 38592–38598. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Fisher, G.J.; Voorhees, J.J.; Quan, T. Actin cytoskeleton assembly regulates collagen production via TGF-β type II receptor in human skin fibroblasts. J. Cell. Mol. Med. 2018, 22, 4085–4096. [Google Scholar] [CrossRef]
- Jia, L.; Sun, P.; Gao, H.; Shen, J.; Gao, Y.; Meng, C.; Fu, S.; Yao, H.; Zhang, G. Mangiferin attenuates bleomycin-induced pulmonary fibrosis in mice through inhibiting TLR4/p65 and TGF-β1/Smad2/3 pathway. J. Pharm. Pharmacol. 2019, 71, 1017–1028. [Google Scholar] [CrossRef]
- Zhu, X.; Cheng, Y.-Q.; Du, L.; Li, Y.; Zhang, F.; Guo, H.; Liu, Y.W.; Yin, X.X. Mangiferin Attenuates Renal Fibrosis through Down-Regulation of Osteopontin in Diabetic Rats. Phytother. Res. 2015, 29, 295–302. [Google Scholar] [CrossRef]
- Deng, Q.; Tian, Y.X.; Liang, J. Mangiferin inhibits cell migration and invasion through Rac1/WAVE2 signalling in breast cancer. Cytotechnology 2018, 70, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Jagetia, G.C.; Venkatesha, V.A. Mangiferin protects human peripheral blood lymphocytes against γ-radiation–induced DNA strand breaks: A fluorescence analysis of DNA unwinding assay. Nutr. Res. 2006, 26, 303–311. [Google Scholar] [CrossRef]
Phase | Ingredient | Function | % w/w |
---|---|---|---|
A | DI water | Solvent | 79.13 |
Glycerin | Humectant | 1.5 | |
Carbopol 940 | Gelling agent | 0.25 | |
MRE-loaded nanoparticles | Active agent | 0.05 | |
B | Sodium Polyacrylate (and) Polyisobutene (and) Water (Light-cream maker) | Polymeric emulsifier | 1 |
Jojoba oil | Emollient | 0.5 | |
C | Cyclopentasiloxane | Emollient | 3 |
Dimethicone | Emollient | 1 | |
Cyclopentasiloxane and dimethicone cross polymer (DC 9045) | Slip modifier | 3 | |
D | Disodium EDTA in DI water | Chelator | 0.02 10 |
E | DMDM hydantoin | Preservative | 0.5 |
F | Triethanolamine | pH adjuster | 0.1 |
Sample | Mangiferin Content (mg/g) |
---|---|
1 | 528.62 ± 41.50 a |
2 | 581.08 ± 27.89 a |
3 | 509.23 ± 28.74 a |
GO Term | Functions | False Discovery Rate |
---|---|---|
GO:0006936 | Actin-filament organization | 8.33 × 10 −5 |
GO:0005200 | Positive regulation of cytoskeleton organization | 0.0103 |
GO:0051015 | Rho protein signal transduction | 0.0448 |
GO:0005198 | Regulation of actin-filament polymerization | 0.0448 |
GO:0044877 | Cytoplasmic translation | 0.0478 |
GO:0006936 | Muscle contraction | 0.0478 |
GO:1902905 | Positive regulation of supramolecule fiber organization | 0.0478 |
GO:0006412 | Translation | 0.0478 |
GO:0032956 | Regulation of actin-cytoskeleton organization | 0.0478 |
GO:0051493 | Regulation of cytoskeleton organization | 0.0478 |
GO:0050790 | Regulation of catalytic activity | 0.0478 |
Tested Substance | Before | At 5 min |
---|---|---|
Positive control (1% w/v SLS) | ||
Negative control/Vehicle control (0.9% w/v NaCl) | ||
MNPs (0.5 mg/mL) | ||
MRE (0.5 mg/mL) | ||
Formulation | Condition | Appearance | pH | Viscosity (Pa. s) | % DPPH Inhibition |
---|---|---|---|---|---|
Emulsion gel base | Day 0 | White, opaque, no precipitation, homogenous | 6.04 | 1.639 ± 0.05 | ND |
H-C 6 cycles | White, opaque, no precipitation, homogenous | 6.06 | 1.826 ± 0.09 | ||
Emulsion gel containing MNPs | Day 0 | Pale greenish, opaque, no precipitation, homogenous | 6.07 | 1.968 ± 0.09 | 85.35 ± 2.34% |
H-C 6 cycles | Pale greenish, opaque, no precipitation, homogenous | 6.07 | 2.020 ± 0.07 | 93.81 ± 3.74% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirirungsee, V.; Samutrtai, P.; Sangthong, P.; Papan, P.; Leelapornpisid, P.; Saenjum, C.; Sirithunyalug, B. Electrosprayed Nanoparticles Containing Mangiferin-Rich Extract from Mango Leaves for Cosmeceutical Application. Nanomaterials 2023, 13, 2931. https://doi.org/10.3390/nano13222931
Sirirungsee V, Samutrtai P, Sangthong P, Papan P, Leelapornpisid P, Saenjum C, Sirithunyalug B. Electrosprayed Nanoparticles Containing Mangiferin-Rich Extract from Mango Leaves for Cosmeceutical Application. Nanomaterials. 2023; 13(22):2931. https://doi.org/10.3390/nano13222931
Chicago/Turabian StyleSirirungsee, Vissuta, Pawitrabhorn Samutrtai, Padchanee Sangthong, Phakorn Papan, Pimporn Leelapornpisid, Chalermpong Saenjum, and Busaban Sirithunyalug. 2023. "Electrosprayed Nanoparticles Containing Mangiferin-Rich Extract from Mango Leaves for Cosmeceutical Application" Nanomaterials 13, no. 22: 2931. https://doi.org/10.3390/nano13222931
APA StyleSirirungsee, V., Samutrtai, P., Sangthong, P., Papan, P., Leelapornpisid, P., Saenjum, C., & Sirithunyalug, B. (2023). Electrosprayed Nanoparticles Containing Mangiferin-Rich Extract from Mango Leaves for Cosmeceutical Application. Nanomaterials, 13(22), 2931. https://doi.org/10.3390/nano13222931