Topic Editors

School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
Dr. Zilong Deng
School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
School of Light Industry and Food Science, Nanjing Forestry University, Nanjing, China
National Engineering Research Center for Advanced Polymer Processing Technology Key Laboratory of Material Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou 450002, China
Dr. Kai Sun
School of Marine Science and Engineering, Shanghai Maritime University, Shanghai, China
National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450000, China

Preparation and Application of Polymer Nanocomposites

Abstract submission deadline
closed (31 October 2024)
Manuscript submission deadline
31 December 2024
Viewed by
21302

Topic Information

Dear Colleagues,

Polymer nanocomposites, which combine the unique physicochemical properties of nanofillers and the flexibility of polymers, have played a significant role in many applications, including building supplies, batteries, thermally and electrically conductive materials, automobiles, electromagnetic interference (EMI) shielding materials, leisure sports and marine systems. They can produce billions of dollars in output values annually. Advanced polymer nanocomposites with high tensile strength, high modulus and substantially superior properties have been attracting increasing attention in the field of aircraft, aerospace, civil engineering and construction, especially in flexible wearable electronics. This topic focuses on the preparation and applications of new polymer nanocomposites, aiming to provide a platform to seek the new functionality of polymer nanocomposites, broadening their application fields in the future.

Dr. Hongbo Gu
Dr. Zilong Deng
Dr. Donglu Fang
Prof. Dr. Xianhu Liu
Dr. Kai Sun
Dr. Hu Liu
Topic Editors

Keywords

  • polymer nanocomposites
  • advanced materials
  • functionalization
  • thermal and electrical conductivity
  • flexible wearable
  • electromagnetic interference (EMI) shielding

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Applied Nano
applnano
- - 2020 17.1 Days CHF 1000 Submit
Materials
materials
3.1 5.8 2008 15.5 Days CHF 2600 Submit
Nanomaterials
nanomaterials
4.4 8.5 2010 13.8 Days CHF 2900 Submit
Polymers
polymers
4.7 8.0 2009 14.5 Days CHF 2700 Submit
Solids
solids
2.4 3.4 2020 20.5 Days CHF 1000 Submit
Molecules
molecules
4.2 7.4 1996 15.1 Days CHF 2700 Submit

Preprints.org is a multidiscipline platform providing preprint service that is dedicated to sharing your research from the start and empowering your research journey.

MDPI Topics is cooperating with Preprints.org and has built a direct connection between MDPI journals and Preprints.org. Authors are encouraged to enjoy the benefits by posting a preprint at Preprints.org prior to publication:

  1. Immediately share your ideas ahead of publication and establish your research priority;
  2. Protect your idea from being stolen with this time-stamped preprint article;
  3. Enhance the exposure and impact of your research;
  4. Receive feedback from your peers in advance;
  5. Have it indexed in Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (12 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
14 pages, 5368 KiB  
Article
Functionalization of Polypropylene by TiO2 Photocatalytic Nanoparticles: On the Importance of the Surface Oxygen Plasma Treatment
by Karolina Zajac, Joanna Macyk, Konrad Szajna, Franciszek Krok, Wojciech Macyk and Andrzej Kotarba
Nanomaterials 2024, 14(16), 1372; https://doi.org/10.3390/nano14161372 - 22 Aug 2024
Viewed by 924
Abstract
A new two-step method for developing a nanocomposite of polypropylene (PP) decorated with photocatalytically active TiO2 nanoparticles (nTiO2) is proposed. This method involves the low-temperature plasma functionalization of polypropylene followed by the ultrasound-assisted anchoring of nTiO2. The nanoparticles, [...] Read more.
A new two-step method for developing a nanocomposite of polypropylene (PP) decorated with photocatalytically active TiO2 nanoparticles (nTiO2) is proposed. This method involves the low-temperature plasma functionalization of polypropylene followed by the ultrasound-assisted anchoring of nTiO2. The nanoparticles, polymeric substrate, and resultant nanocomposite were thoroughly characterized using nanoparticle tracking analysis (NTA), microscopic observations (SEM, TEM, and EDX), spectroscopic investigations (XPS and FTIR), thermogravimetric analysis (TG/DTA), and water contact angle (WCA) measurements. The photocatalytic activity of the nanocomposites was evaluated through the degradation of methyl orange. The individual TiO2 nanoparticles ranged from 2 to 6 nm in size. The oxygen plasma treatment of PP generated surface functional groups (mainly -OH and -C=O), transforming the surface from hydrophobic to hydrophilic, which facilitated the efficient deposition of nTiO2. Optimized plasma treatment and sonochemical deposition parameters resulted in an active photocatalytic nTiO2/PP system, degrading 80% of the methyl orange under UVA irradiation in 200 min. The proposed approach is considered versatile for the functionalization of polymeric materials with photoactive nanoparticles and, in a broader perspective, can be utilized for the fabrication of self-cleaning surfaces. Full article
(This article belongs to the Topic Preparation and Application of Polymer Nanocomposites)
Show Figures

Figure 1

14 pages, 4064 KiB  
Article
Percolation-Triggered Negative Permittivity in Nano Carbon Powder/Polyvinylidene Fluoride Composites
by Guangyue Shi, Xiaolei Sun and Yao Liu
Molecules 2024, 29(16), 3862; https://doi.org/10.3390/molecules29163862 - 15 Aug 2024
Viewed by 689
Abstract
Percolating composites exhibiting negative permittivity have garnered considerable attention due to their promising applications in the realm of electromagnetic shielding, innovative capacitance devices, coil-less inductors, etc. Nano carbon powder/polyvinylidene fluoride (CP/PVDF) percolating composites were fabricated that exhibit Drude-type negative-permittivity behavior upon reaching the [...] Read more.
Percolating composites exhibiting negative permittivity have garnered considerable attention due to their promising applications in the realm of electromagnetic shielding, innovative capacitance devices, coil-less inductors, etc. Nano carbon powder/polyvinylidene fluoride (CP/PVDF) percolating composites were fabricated that exhibit Drude-type negative-permittivity behavior upon reaching the CP percolation threshold. This phenomenon is attributed to the formation of a plasmonic state within the interconnected CP network, enabling the delocalization of electrons under the alternating electric field. Furthermore, a significant (nearly two orders of magnitude) increase in the conductivity of sample is observed at a CP content of 12.5 wt%. This abrupt change coincides with the percolation phenomenon, suggesting a transition in the conduction mechanism. To elucidate this behavior, comprehensive analyses of the phase composition, microstructure, AC conductivity, and relative permittivity were performed. Additionally, the sample containing 5 wt% CP exhibits a remarkably high permittivity of 31.5, accompanied by a relatively low dielectric loss (tanδ < 0.2). The findings expand the potential applications of PVDF, while the fabricated percolating composites hold promise for electromagnetic shielding, antennas, and other electromagnetic devices. Full article
(This article belongs to the Topic Preparation and Application of Polymer Nanocomposites)
Show Figures

Figure 1

30 pages, 9720 KiB  
Review
Thermal Conductive Polymer Composites: Recent Progress and Applications
by Jianfeng Tan and Yuan Zhang
Molecules 2024, 29(15), 3572; https://doi.org/10.3390/molecules29153572 - 29 Jul 2024
Cited by 2 | Viewed by 2317
Abstract
As microelectronics technology advances towards miniaturization and higher integration, the imperative for developing high-performance thermal management materials has escalated. Thermal conductive polymer composites (TCPCs), which leverage the benefits of polymer matrices and the unique effects of nano-enhancers, are gaining focus as solutions to [...] Read more.
As microelectronics technology advances towards miniaturization and higher integration, the imperative for developing high-performance thermal management materials has escalated. Thermal conductive polymer composites (TCPCs), which leverage the benefits of polymer matrices and the unique effects of nano-enhancers, are gaining focus as solutions to overheating due to their low density, ease of processing, and cost-effectiveness. However, these materials often face challenges such as thermal conductivities that are lower than expected, limiting their application in high-performance electronic devices. Despite these issues, TCPCs continue to demonstrate broad potential across various industrial sectors. This review comprehensively presents the progress in this field, detailing the mechanisms of thermal conductivity (TC) in these composites and discussing factors that influence thermal performance, such as the intrinsic properties of polymers, interfacial thermal resistance, and the thermal properties of fillers. Additionally, it categorizes and summarizes methods to enhance the TC of polymer composites. The review also highlights the applications of these materials in emerging areas such as flexible electronic devices, personal thermal management, and aerospace. Ultimately, by analyzing current challenges and opportunities, this review provides clear directions for future research and development. Full article
(This article belongs to the Topic Preparation and Application of Polymer Nanocomposites)
Show Figures

Figure 1

29 pages, 5877 KiB  
Article
Establishing the Link across the Synthesis Reaction Kinetics, Structural Changes, and Photocatalytic Efficiency of an Enhanced Chitosan–Clay (1:3) Nanocomposite
by Wael Albouchi, Malek Lahbib, Chadha Mejri, Sana Jebali, Mahdi Meftah and Walid Oueslati
Solids 2024, 5(2), 227-255; https://doi.org/10.3390/solids5020015 - 25 Apr 2024
Viewed by 1281
Abstract
This research investigates the influence of synthesis kinetics on the structural and photocatalytic properties of chitosan–clay nanocomposites (Cs/MMT) and chitosan–hectorite nanocomposites (Cs/HET), employing an optimized initial stoichiometry of 1:3. Utilizing a variety of analytical techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM), [...] Read more.
This research investigates the influence of synthesis kinetics on the structural and photocatalytic properties of chitosan–clay nanocomposites (Cs/MMT) and chitosan–hectorite nanocomposites (Cs/HET), employing an optimized initial stoichiometry of 1:3. Utilizing a variety of analytical techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FTIR), the study explores the structural evolution of the nanocomposites and their photocatalytic performance using semiconductor catalysts TiO2 and ZnO. The findings emphasize the significant impact of reaction kinetics, particularly after 3 h of reaction time, on the structural features of the nanocomposites. Notably, Cs/MMT demonstrates greater crystalline stability compared to Cs/HET due to variations in octahedral cavity occupancy in the initial clays. FTIR and TEM analyses depict the progressive evolution of the nanocomposites during the reaction, shedding light on how reaction kinetics drive the formation of specific bonds within the nanocomposites. In terms of photocatalytic activity, this study provides insights into the complex dynamics of photocatalytic degradation, with a specific focus on the performance of TiO2 and ZnO under diverse experimental conditions. The superior efficacy of TiO2 as a catalyst, particularly when integrated with Cs/MMT nanocomposites, is unequivocally demonstrated, with degradation rates exceeding 80%. This preference stems from TiO2 consistently exhibiting higher degradation rates compared to ZnO, attributed to structural disparities between montmorillonite and hectorite, influencing catalyst–support interactions. The findings underscore the critical importance of selecting suitable catalyst and support matrix combinations for optimizing performance in specific applications. Full article
(This article belongs to the Topic Preparation and Application of Polymer Nanocomposites)
Show Figures

Graphical abstract

18 pages, 25280 KiB  
Article
Electrosprayed Nanoparticles Containing Mangiferin-Rich Extract from Mango Leaves for Cosmeceutical Application
by Vissuta Sirirungsee, Pawitrabhorn Samutrtai, Padchanee Sangthong, Phakorn Papan, Pimporn Leelapornpisid, Chalermpong Saenjum and Busaban Sirithunyalug
Nanomaterials 2023, 13(22), 2931; https://doi.org/10.3390/nano13222931 - 11 Nov 2023
Cited by 2 | Viewed by 1630
Abstract
Mango (Mangifera indica L.) is one of the most economically important fruits in Thailand. Mango has been used as a traditional medicine because it possesses many biological activities, such as antioxidant properties, anti-inflammatory properties, microorganism-growth inhibition, etc. Among its natural pharmacologically active [...] Read more.
Mango (Mangifera indica L.) is one of the most economically important fruits in Thailand. Mango has been used as a traditional medicine because it possesses many biological activities, such as antioxidant properties, anti-inflammatory properties, microorganism-growth inhibition, etc. Among its natural pharmacologically active compounds, mangiferin is the main active component found in mango leaves. Mangiferin has the potential to treat a variety of diseases due to its multifunctional activities. This study aims to prepare a mangiferin-rich extract (MRE) from mango leaves and develop nanoparticles containing the MRE using an electrospraying technique to apply it in a cosmeceutical formulation. The potential cosmeceutical mechanisms of the MRE were investigated using proteomic analysis. The MRE is involved in actin-filament organization, the positive regulation of cytoskeleton organization, etc. Moreover, the related mechanism to its cosmeceutical activity is metalloenzyme-activity regulation. Nanoparticles were prepared from 0.8% w/v MRE and 2% w/v Eudragit® L100 solution using an electrospraying process. The mean size of the MRE-loaded nanoparticles (MNPs) received was 247.8 nm, with a PDI 0.271. The MRE entrapment by the process was quantified as 84.9%, indicating a high encapsulation efficiency. For the skin-retention study, the mangiferin content in the MNP-containing emulsion-gel membranes was examined and found to be greater than in the membranes of the MRE solution, illustrating that the MNPs produced by the electrospraying technique help transdermal delivery for cosmetic applications. Full article
(This article belongs to the Topic Preparation and Application of Polymer Nanocomposites)
Show Figures

Figure 1

20 pages, 17256 KiB  
Article
Effect of Graphene Oxide-Modified CaAl-Layered Double Hydroxides on the Carbon Dioxide Permeation Properties of Fluoroelastomers
by Chuanbo Cong, Daigang Peng, Qingkun Liu, Mingyang Yuan, Xiaoyu Meng and Qiong Zhou
Polymers 2023, 15(20), 4151; https://doi.org/10.3390/polym15204151 - 19 Oct 2023
Cited by 1 | Viewed by 1281
Abstract
This work aimed to investigate the CO2 gas barrier and mechanical properties of fluorine rubber nanocomposites filled with Ca/Al layered hydroxide (graphene oxide [GO]/LDH-Ca2Al) modified by GO. GO/LDH-Ca2Al nanocomposite fillers were prepared by depositing Ca/Al layered hydroxide (LDH-Ca [...] Read more.
This work aimed to investigate the CO2 gas barrier and mechanical properties of fluorine rubber nanocomposites filled with Ca/Al layered hydroxide (graphene oxide [GO]/LDH-Ca2Al) modified by GO. GO/LDH-Ca2Al nanocomposite fillers were prepared by depositing Ca/Al layered hydroxide (LDH-Ca2Al) into the surface of alkalized GO (Al-GO). The prepared GO/LDH-Ca2Al nanocomposite fillers and complexes were characterized by Fourier infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) for structural and micromorphological characterization. The results showed that GO/LDH-Ca2Al was successfully prepared with strong interactions between Al-GO and LDH, and the compatibility of GO/LDH-Ca2Al nanocomposite fillers with the polymer was significantly improved compared with that of LDH-Ca2Al. Consequently, both the fracture strength (σb) and strain (εb) of GO/LDH-Ca2Al nanocomplexes remarkably increased, and they exhibited excellent mechanical properties. Differential scanning calorimetry and thermogravimetric analysis were used to characterize the thermal stability of GO/LDH-Ca2Al nanocomposite fillers, and GO/LDH-Ca2Al nanocomposite fillers have better thermal stability than LDH-Ca2Al. The reaction products (S-LDH-Ca2Al and S-GO-Ca2Al) of LDH-Ca2Al and GO/LDH-Ca2Al with CO2 were characterized using XRD and TGA, respectively, and the results show that LDH-Ca2Al reacts readily and chemically with CO2, resulting in a lower diffusion coefficient of CO2 in the LDH-Ca2Al nanocomplexes than that of the GO/LDH-Ca2Al nanocomplexes and leading to the destruction of the laminar structure of LDH-Ca2Al, while GO/LDH-Ca2Al has better CO2 resistance stability. GO/LDH-Ca2Al nanocomplexes exhibited a reduced content of hydroxyl groups with pro-CO2 nature exposed on the surface of LDH-Ca2Al, improving the interfacial interaction between the nanofillers and the rubber matrix and enhancing the dispersion of GO/LDH-Ca2Al in the polymers. Moreover, CO2 in the soluble GO/LDH-Ca2Al nanocomposites was significantly reduced, while the diffusion properties demonstrated weak temperature dependence on solubility. The mechanism of the CO2 gas barrier of polymers filled with GO/LDH-Ca2Al was proposed on the basis of the Arrhenius equation. Full article
(This article belongs to the Topic Preparation and Application of Polymer Nanocomposites)
Show Figures

Figure 1

30 pages, 7681 KiB  
Review
Cellulose-Based Intelligent Responsive Materials: A Review
by Sisi Chang, Zhangzhao Weng, Chunmei Zhang, Shaohua Jiang and Gaigai Duan
Polymers 2023, 15(19), 3905; https://doi.org/10.3390/polym15193905 - 27 Sep 2023
Cited by 13 | Viewed by 2701
Abstract
Due to the rapid development of intelligent technology and the pursuit of green environmental protection, responsive materials with single response and actuation can no longer meet the requirements of modern technology for intelligence, diversification, and environmental friendliness. Therefore, intelligent responsive materials have received [...] Read more.
Due to the rapid development of intelligent technology and the pursuit of green environmental protection, responsive materials with single response and actuation can no longer meet the requirements of modern technology for intelligence, diversification, and environmental friendliness. Therefore, intelligent responsive materials have received much attention. In recent years, with the development of new materials and technologies, cellulose materials have become increasingly used as responsive materials due to their advantages of sustainability and renewability. This review summarizes the relevant research on cellulose-based intelligent responsive materials in recent years. According to the stimuli responses, they are divided into temperature-, light-, electrical-, magnetic-, and humidity-responsive types. The response mechanism, application status, and development trend of cellulose-based intelligent responsive materials are summarized. Finally, the future perspectives on the preparation and applications of cellulose-based intelligent responsive materials are presented for future research directions. Full article
(This article belongs to the Topic Preparation and Application of Polymer Nanocomposites)
Show Figures

Figure 1

12 pages, 2778 KiB  
Article
The Influence of Polyvinyl Alcohol Porogen Addition on the Nanostructural Characteristics of Hydroxyapatite
by Indrika Novella, Bedah Rupaedah, Diana Rakhmawaty Eddy, Suryana, Ferli Septi Irwansyah and Atiek Rostika Noviyanti
Materials 2023, 16(18), 6313; https://doi.org/10.3390/ma16186313 - 20 Sep 2023
Cited by 2 | Viewed by 1244
Abstract
Hydroxyapatite (HA) is a porous material widely developed in various research fields because of its high biodegradability, biocompatibility, and low toxicity. In this research, HA was synthesized using a hydrothermal method with chicken eggshells as a calcium source and various concentrations of polyvinyl [...] Read more.
Hydroxyapatite (HA) is a porous material widely developed in various research fields because of its high biodegradability, biocompatibility, and low toxicity. In this research, HA was synthesized using a hydrothermal method with chicken eggshells as a calcium source and various concentrations of polyvinyl alcohol as a porogen (2.5%, 5.0%, and 7.5% by wt). The structure and morphology of HA were determined by X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. HA was obtained with varying concentrations of polyvinyl alcohol (PVA) porogen according to Inorganic Crystal Structure Database (ICSD) standard. Based on analysis using a refinement method, changes in unit cell parameters (cell volume and lattice strain) of HA synthesized using PVA porogen compared to the standard, the chi square (χ2) and index of R values were relatively low, validating the acceptable of the data. In addition, HA [Ca10(PO4)6(OH)2] with hexagonal structure and the P63/m space group was successfully obtained. Morphological analysis of HA by SEM found that HA has a spherical shape, and the porosity of HA increases with increasing concentrations of polyvinyl alcohol. The highest porosity was obtained with an addition of 5.0 wt% of PVA porogen (HAP3), reaching 69.53%. Full article
(This article belongs to the Topic Preparation and Application of Polymer Nanocomposites)
Show Figures

Figure 1

21 pages, 3425 KiB  
Article
Hybrid Chitosan–TiO2 Nanocomposite Impregnated in Type A-2186 Maxillofacial Silicone Subjected to Different Accelerated Aging Conditions: An Evaluation of Color Stability
by Faten K. Al-Kadi, Jwan F. Abdulkareem and Bruska A. Azhdar
Nanomaterials 2023, 13(16), 2379; https://doi.org/10.3390/nano13162379 - 20 Aug 2023
Cited by 1 | Viewed by 1664
Abstract
This study explores the impact of the incorporation of a chitosan–TiO2 nanocomposite on the color stability of pigmented room-temperature vulcanization maxillofacial silicone under various accelerated aging conditions. Five hundred disk-shaped specimens were formed with type A-2186 silicone elastomer, and they were distributed [...] Read more.
This study explores the impact of the incorporation of a chitosan–TiO2 nanocomposite on the color stability of pigmented room-temperature vulcanization maxillofacial silicone under various accelerated aging conditions. Five hundred disk-shaped specimens were formed with type A-2186 silicone elastomer, and they were distributed into groups based on pigment types and nanoparticle treatments. The color difference (ΔE) was assessed using a colorimeter in the CIELAB color system before and after exposure to aging conditions, including UV-accelerated aging and outdoor weathering. ANOVA, Dennett’s T3, and Tukey HSD tests revealed significant color alterations across all silicone types, with the most pronounced being in the red-colored 3% chitosan specimens and the least pronounced being in the 2% TiO2 specimens that underwent UV-accelerated aging. Outdoor weathering consistently increased the ΔE values across all categories. This study suggests that while nanoparticles may offer some resistance against accelerated aging, they fall short in adequately defending against UV radiation during outdoor weathering. Full article
(This article belongs to the Topic Preparation and Application of Polymer Nanocomposites)
Show Figures

Figure 1

19 pages, 3328 KiB  
Article
Production and Properties of Quercetin-Loaded Liposomes and Their Influence on the Properties of Galactomannan-Based Films
by Priscilla Barbosa Sales de Albuquerque, Marthyna Pessoa de Souza, Ana Isabel Bourbon, Miguel A. Cerqueira, Lorenzo Pastrana, Paula Jauregi, José A. Teixeira and Maria das Graças Carneiro-da-Cunha
Appl. Nano 2023, 4(2), 159-177; https://doi.org/10.3390/applnano4020009 - 31 May 2023
Cited by 1 | Viewed by 2516
Abstract
The objective of this work was to prepare different concentrations of liposomes based on lecithin containing quercetin, and evaluate their effect on the properties of galactomannan films obtained from Cassia grandis seeds. Quercetin-loaded lecithin liposomes (QT-LL) were obtained by the ethanol injection method [...] Read more.
The objective of this work was to prepare different concentrations of liposomes based on lecithin containing quercetin, and evaluate their effect on the properties of galactomannan films obtained from Cassia grandis seeds. Quercetin-loaded lecithin liposomes (QT-LL) were obtained by the ethanol injection method by incorporating quercetin in different concentrations in a previously prepared suspension of lecithin liposomes in water. Following characterization of QT-LLs by zeta potential and dynamic light scattering, QT-LL with 75 µg quercetin/mL suspension was incorporated at different concentrations in galactomannan films. The films obtained were characterized for color, solubility, moisture content (MC), water vapor permeability (WVP), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared (FTIR) spectroscopy. The size of lecithin liposomes with no quercetin was statistically than those containing quercetin above 50 µg/mL. All the QT-LLs presented a low polydispersity index, even considering their significant differences and similar values for zeta potential. The films displayed a rough surface and the galactomannan structure was confirmed by FTIR. Additionally, the amorphous nature of the polysaccharide was observed by XRD. The films were luminous, with a predominant yellow tendency and low opacity. The incorporation of QT-LL in galactomannan films did not lead to statistical differences for solubility and MC, while significant differences were observed for WVP. Galactomannan films were shown to be a promising structure for the incorporation of lecithin liposomes loaded with quercetin, pointing at promising applications for different applications. Full article
(This article belongs to the Topic Preparation and Application of Polymer Nanocomposites)
Show Figures

Figure 1

13 pages, 3878 KiB  
Article
Electromagnetic Shielding Enhancement of Butyl Rubber/Single-Walled Carbon Nanotube Composites via Water-Induced Modification
by Xin Guo and Guangye Liu
Polymers 2023, 15(9), 2101; https://doi.org/10.3390/polym15092101 - 28 Apr 2023
Cited by 5 | Viewed by 1352
Abstract
Electromagnetic properties of polymer composites strongly depend on the loading amount and the completeness of the filler’s dispersive structure. Improving the compatibility of single-walled carbon nanotubes (SWCNTs) with isobutylene butyl rubber (IIR) is a good solution to mitigate aggregation. The change in configuration [...] Read more.
Electromagnetic properties of polymer composites strongly depend on the loading amount and the completeness of the filler’s dispersive structure. Improving the compatibility of single-walled carbon nanotubes (SWCNTs) with isobutylene butyl rubber (IIR) is a good solution to mitigate aggregation. The change in configuration of poly-oxyethylene octyl phenol ether (OP-10) was induced using water as the exposed hydrophilic groups linking with water molecules. The SWCNT and IIR/SWCNT composites were then prepared via wetly-melt mixing at a relatively high temperature to remove water, and they were then mixed with other agents after vacuum drying and cured. The SWCNTs were dispersed uniformly to form a good network for a lower percolation threshold of the wave-absorbing property to 2 phr from 8 phr. With 8 phr SWCNTs, the tensile strength of the material improved significantly from 7.1 MPa to 15.1 MPa, and the total electromagnetic shielding effectiveness of the material was enhanced to 23.8 dB, a 3-fold increase compared to the melt-mixed material. It was demonstrated that water-induced modification achieved good dispersion of SWCNTs for electromagnetic shielding enhancement while maintaining a wide damping temperature range from −55 °C to 40 °C with a damping factor over 0.2. Full article
(This article belongs to the Topic Preparation and Application of Polymer Nanocomposites)
Show Figures

Figure 1

14 pages, 3895 KiB  
Article
Effect of Graphite Nanoplatelet Size and Dispersion on the Thermal and Mechanical Properties of Epoxy-Based Nanocomposites
by Elsye Agustina, Jeung Choon Goak, Suntae Lee, Yongse Kim, Sung Chul Hong, Yongho Seo and Naesung Lee
Nanomaterials 2023, 13(8), 1328; https://doi.org/10.3390/nano13081328 - 10 Apr 2023
Cited by 8 | Viewed by 1753
Abstract
This study investigated the effect of graphite nanoplatelet (GNP) size and dispersion on the thermal conductivities and tensile strengths of epoxy-based composites. GNPs of four different platelet sizes, ranging from 1.6 to 3 µm, were derived by mechanically exfoliating and breaking expanded graphite [...] Read more.
This study investigated the effect of graphite nanoplatelet (GNP) size and dispersion on the thermal conductivities and tensile strengths of epoxy-based composites. GNPs of four different platelet sizes, ranging from 1.6 to 3 µm, were derived by mechanically exfoliating and breaking expanded graphite (EG) particles using high-energy bead milling and sonication. The GNPs were used as fillers at loadings of 0–10 wt%. As the GNP size and loading amount increased, the thermal conductivities of the GNP/epoxy composites increased, but their tensile strengths decreased. However, interestingly, the tensile strength reached a maximum value at the low GNP content of 0.3% and thereafter decreased, irrespective of the GNP size. Our observations of the morphologies and dispersions of the GNPs in the composites indicated that the thermal conductivity was more likely related to the size and loading number of fillers, whereas the tensile strength was more influenced by the dispersion of fillers in the matrix. Full article
(This article belongs to the Topic Preparation and Application of Polymer Nanocomposites)
Show Figures

Figure 1

Back to TopTop