Eco-Friendly Engineered Nanomaterials Coupled with Filtering Fine-Mesh Net as a Promising Tool to Remediate Contaminated Freshwater Sludges: An Ecotoxicity Investigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Devices
2.2. Preparation and Characterization of CNS
2.3. Exposure Water Set-Up
2.4. Freshwater Sludge Chemical Analyses
2.5. Ecotoxicity Assessment
2.5.1. Acute Toxicity Test with Aliivibrio fischeri
2.5.2. Acute Toxicity Test with Heterocypris incongruens
2.5.3. Sublethal Toxicity with the Freshwater Bivalves D. polymorpha: Sampling, Maintenance Condition, and Laboratory Exposure
2.5.4. Sublethal Toxicity with the Freshwater Bivalves D. polymorpha: Viability Assessment
2.5.5. Sublethal Toxicity with the Freshwater Bivalves D. polymorpha: Comet Assay
2.5.6. Sublethal Toxicity with the Freshwater Bivalves D. polymorpha: Cytome Assay
2.6. Statistical Analysis
3. Results
3.1. Water Exposure and Sediment Characterization
3.2. Acute Toxicity Test with Aliivibrio fischeri
3.3. Sludge Toxicity with Heterocypris incongruens
3.4. Viability Assessment on D. polymorpha
3.5. Comet Assay on D. polymorpha
3.6. Cytome Assay on D. polymorpha
4. Discussion
4.1. Efficacy in Terms of Adsorbent Capacity of CNS
4.2. Safety in Terms of Acute Toxicity (Aliivibrio fischeri and Heterocypris incongruens)
4.3. Safety in Terms of Acute Sublethal Toxicity with the Freshwater Bivalves D. polymorpha
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abhilash, P.C.; Tripathi, V.; Edrisi, S.A.; Dubey, R.K.; Bakshi, M.; Dubey, P.K.; Singh, H.B.; Ebbs, S.D. Sustainability of crop production from polluted lands. Energy, Ecol. Environ. 2016, 1, 54–65. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; Liu, C.; Jia, S.; Chan, F.T.; Ma, M.; Ma, X. An emergy-based sustainability evaluation method for outsourcing machining resources. J. Clean. Prod. 2019, 245, 118849. [Google Scholar] [CrossRef]
- Shields, M.W.; Johnson, A.C.; Pandey, S.; Cullen, R.; Chang, M.G.; Wratten, S.D.; Gurr, G.M. History, current situation and challenges for conservation biological control. Biol. Control. 2019, 131, 25–35. [Google Scholar] [CrossRef]
- Karn, B.; Kuiken, T.; Otto, M. Nanotechnology and in Situ Remediation: A Review of the Benefits and Potential Risks. Environ. Health Perspect. 2009, 117, 1813–1831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lofrano, G.; Libralato, G.; Brown, J. Nanotechnologies for Environmental Remediation; Springer: Cham, Switzerland, 2017; pp. 1–325. [Google Scholar] [CrossRef]
- Thangavel, P.; Sridevi, G. Environmental Sustainability: Role of Green Technologies; Springer: Berlin/Heidelberg, Germany, 2015; p. 325. [Google Scholar] [CrossRef]
- Bouqellah, N.A.; Mohamed, M.M.; Ibrahim, Y. Synthesis of eco-friendly silver nanoparticles using Allium sp. and their antimicrobial potential on selected vaginal bacteria. Saudi J. Biol. Sci. 2019, 26, 1789–1794. [Google Scholar] [CrossRef] [PubMed]
- Das, M.; Chatterjee, S. Green Synthesis of Metal/metal Oxide Nanoparticles toward Biomedical Applications: Boon or Bane. In Green Synthesis, Characterization and Applications of Nanoparticles; Elsevier: Amsterdam, The Netherlands, 2019; pp. 265–301. [Google Scholar] [CrossRef]
- Khan, M.M.; Adil, S.F.; Al-Mayouf, A. Metal oxides as photocatalysts. J. Saudi Chem. Soc. 2015, 19, 462–464. [Google Scholar] [CrossRef] [Green Version]
- Guidi, P.; Bernardeschi, M.; Palumbo, M.; Genovese, M.; Scarcelli, V.; Fiorati, A.; Riva, L.; Punta, C.; Corsi, I.; Frenzilli, G. Suitability of a Cellulose-Based Nanomaterial for the Remediation of Heavy Metal Contaminated Freshwaters: A Case-Study Showing the Recovery of Cadmium Induced DNA Integrity Loss, Cell Proliferation Increase, Nuclear Morphology and Chromosomal Alterations on Dreissena polymorpha. Nanomaterials 2020, 10, 1837. [Google Scholar] [CrossRef]
- Bernardeschi, M.; Guidi, P.; Palumbo, M.; Genovese, M.; Alfè, M.; Gargiulo, V.; Lucchesi, P.; Scarcelli, V.; Falleni, A.; Bergami, E.; et al. Suitability of Nanoparticles to Face Benzo(a)pyrene-Induced Genetic and Chromosomal Damage in M. galloprovincialis. An In Vitro Approach. Nanomaterials 2021, 11, 1309. [Google Scholar] [CrossRef] [PubMed]
- Lei, C.; Sun, Y.; Khan, E.; Chen, S.; Tsang, D.C.; Graham, N.J.; Ok, Y.S.; Yang, X.; Lin, D.; Feng, Y.; et al. Removal of chlorinated organic solvents from hydraulic fracturing wastewater by bare and entrapped nanoscale zero-valent iron. Chemosphere 2018, 196, 9–17. [Google Scholar] [CrossRef]
- Corsi, I.; Fiorati, A.; Grassi, G.; Bartolozzi, I.; Daddi, T.; Melone, L.; Punta, C. Environmentally Sustainable and Ecosafe Polysaccharide-Based Materials for Water Nano-Treatment: An Eco-Design Study. Materials 2018, 11, 1228. [Google Scholar] [CrossRef] [Green Version]
- Esposito, M.; Corsi, I.; Russo, G.; Punta, C.; Tosti, E.; Gallo, A. The Era of Nanomaterials: A Safe Solution or a Risk for Marine Environmental Pollution? Biomolecules 2021, 11, 441. [Google Scholar] [CrossRef] [PubMed]
- Ganie, A.S.; Bano, S.; Khan, N.; Sultana, S.; Rehman, Z.; Rahman, M.M.; Sabir, S.; Coulon, F.; Khan, M.Z. Nanoremediation technologies for sustainable remediation of contaminated environments: Recent advances and challenges. Chemosphere 2021, 275, 130065. [Google Scholar] [CrossRef]
- Corsi, I.; Winther-Nielsen, M.; Sethi, R.; Punta, C.; Della Torre, C.; Libralato, G.; Lofrano, G.; Sabatini, L.; Aiello, M.; Fiordi, L.; et al. Ecofriendly nanotechnologies and nanomaterials for environmental applications: Key issue and consensus recommendations for sustainable and ecosafe nanoremediation. Ecotoxicol. Environ. Saf. 2018, 154, 237–244. [Google Scholar] [CrossRef]
- Ilaria, C.; Iole, V.; Francesco, T.; Carlo, P. Environmental safety of nanotechnologies: The eco-design of manufactured nanomaterials for environmental remediation. Sci. Total. Environ. 2023, 864, 161181. [Google Scholar] [CrossRef]
- Paladini, G.; Venuti, V.; Almásy, L.; Melone, L.; Crupi, V.; Majolino, D.; Pastori, N.; Fiorati, A.; Punta, C. Cross-linked cellulose nano-sponges: A small angle neutron scattering (SANS) study. Cellulose 2019, 26, 9005–9019. [Google Scholar] [CrossRef]
- Paladini, G.; Venuti, V.; Crupi, V.; Majolino, D.; Fiorati, A.; Punta, C. FTIR-ATR analysis of the H-bond network of water in branched polyethyleneimine/TEMPO-oxidized cellulose nano-fiber xerogels. Cellulose 2020, 27, 8605–8618. [Google Scholar] [CrossRef]
- Melone, L.; Rossi, B.; Pastori, N.; Panzeri, W.; Mele, A.; Punta, C. TEMPO-Oxidized Cellulose Cross-Linked with Branched Polyethyleneimine: Nanostructured Adsorbent Sponges for Water Remediation. Chempluschem 2015, 80, 1408–1415. [Google Scholar] [CrossRef]
- Fiorati, A.; Grassi, G.; Graziano, A.; Liberatori, G.; Pastori, N.; Melone, L.; Bonciani, L.; Pontorno, L.; Punta, C.; Corsi, I. Eco-design of nanostructured cellulose sponges for sea-water decontamination from heavy metal ions. J. Clean. Prod. 2020, 246, 119009. [Google Scholar] [CrossRef]
- Riva, L.; Pastori, N.; Panozzo, A.; Antonelli, M.; Punta, C. Nanostructured Cellulose-Based Sorbent Materials for Water Decontamination from Organic Dyes. Nanomaterials 2020, 10, 1570. [Google Scholar] [CrossRef]
- Liberatori, G.; Grassi, G.; Guidi, P.; Bernardeschi, M.; Fiorati, A.; Scarcelli, V.; Genovese, M.; Faleri, C.; Protano, G.; Frenzilli, G.; et al. Effect-Based Approach to Assess Nanostructured Cellulose Sponge Removal Efficacy of Zinc Ions from Seawater to Prevent Ecological Risks. Nanomaterials 2020, 10, 1283. [Google Scholar] [CrossRef]
- Guidi, P.; Bernardeschi, M.; Palumbo, M.; Scarcelli, V.; Genovese, M.; Protano, G.; Vitiello, V.; Pontorno, L.; Bonciani, L.; Buttino, I.; et al. Cellular Responses Induced by Zinc in Zebra Mussel Haemocytes. Loss of DNA Integrity as a Cellular Mechanism to Evaluate the Suitability of Nanocellulose-Based Materials in Nanoremediation. Nanomaterials 2021, 11, 2219. [Google Scholar] [CrossRef]
- Gajski, G.; Žegura, B.; Ladeira, C.; Pourrut, B.; Del Bo’, C.; Novak, M.; Sramkova, M.; Milić, M.; Gutzkow, K.B.; Costa, S.; et al. The comet assay in animal models: From bugs to whales—(Part 1 Invertebrates). Mutat. Res. Rev. Mutat. Res. 2019, 779, 82–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caliani, I.; Porcelloni, S.; Mori, G.; Frenzilli, G.; Ferraro, M.; Marsili, L.; Casini, S.; Fossi, M.C. Genotoxic effects of produced waters in mosquito fish (Gambusia affinis). Ecotoxicology 2008, 18, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Carere, M.; Antoccia, A.; Buschini, A.; Frenzilli, G.; Marcon, F.; Andreoli, C.; Gorbi, G.; Suppa, A.; Montalbano, S.; Prota, V.; et al. An integrated approach for chemical water quality assessment of an urban river stretch through Effect-Based Methods and emerging pollutants analysis with a focus on genotoxicity. J. Environ. Manag. 2021, 300, 113549. [Google Scholar] [CrossRef] [PubMed]
- Stampino, P.G.; Riva, L.; Punta, C.; Elegir, G.; Bussini, D.; Dotelli, G. Comparative Life Cycle Assessment of Cellulose Nanofibres Production Routes from Virgin and Recycled Raw Materials. Molecules 2021, 26, 2558. [Google Scholar] [CrossRef]
- Fiorati, A.; Turco, G.; Travan, A.; Caneva, E.; Pastori, N.; Cametti, M.; Punta, C.; Melone, L. Mechanical and Drug Release Properties of Sponges from Cross-linked Cellulose Nanofibers. Chempluschem 2017, 82, 848–858. [Google Scholar] [CrossRef]
- UNI EN ISO 11348-3; 2019 Water Quality—Determination of the Inhibitory Effect of Water Samples on the Light Emission of Vibrio fischeri (Luminescent Bacteria Test)—Part 3: Method Using Freeze-Dried Bacteria of the Inhibitory Effect of Water Samples. Ente Nazionale Italiano di Unificazione: Milan, Italy, 2019.
- Persoone, G.; Marsalek, B.; Blinova, I.; Törökne, A.; Zarina, D.; Manusadzianas, L.; Nalecz-Jawecki, G.; Tofan, L.; Stepanova, N.; Tothova, L.; et al. A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters. Environ. Toxicol. 2003, 18, 395–402. [Google Scholar] [CrossRef]
- Environmental Canada. Guidance Document on Statistical Methods for Environmental Toxicity Tests; Reports EPS 1/RM/46; EC: Ottawa, ON, Canada, 2007.
- UNI ISO 14371; Water Quality—Determination of Freshwater Sediment Toxicity to Heterocypris incongruens (Crustacea, Ostracoda). International Organization for Standardization: Geneva, Switzerland, 2012.
- Abbott, W.S. A Method of Computing the Effectiveness of an Insecticide. J. Econ. Èntomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- De Cooman, W.; Blaise, C.; Janssen, C.; Detemmerman, L.; Elst, R.; Persoone, G. History and sensitivity comparison of two standard whole-sediment toxicity tests with crustaceans: The amphipod Hyalella azteca and the ostracod Heterocypris incongruens microbiotest. Knowl. Manag. Aquat. Ecosyst. 2015, 416, 15. [Google Scholar] [CrossRef] [Green Version]
- Binelli, A.; Cogni, D.; Parolini, M.; Riva, C.; Provini, A. In vivo experiments for the evaluation of genotoxic and cytotoxic effects of Triclosan in Zebra mussel hemocytes. Aquat. Toxicol. 2009, 91, 238–244. [Google Scholar] [CrossRef]
- Guidi, P.; Bernardeschi, M.; Scarcelli, V.; Cantafora, E.; Benedetti, M.; Falleni, A.; Frenzilli, G. Lysosomal, genetic and chromosomal damage in haemocytes of the freshwater bivalve (Unio pictorum) exposed to polluted sediments from the River Cecina (Italy). Chem. Ecol. 2017, 33, 516–527. [Google Scholar] [CrossRef]
- Lowe, D.; Fossato, V.; Depledge, M. Contaminant-induced lysosomal membrane damage in blood cells of mussels Mytilus galloprovincialis from the Venice Lagoon: An in vitro study. Mar. Ecol. Prog. Ser. 1995, 129, 189–196. [Google Scholar] [CrossRef]
- Guidi, P.; Corsolini, S.; Bernardeschi, M.; Rocco, L.; Nigro, M.; Baroni, D.; Mottola, F.; Scarcelli, V.; Santonastaso, M.; Falleni, A.; et al. Dioxin-like compounds bioavailability and genotoxicity assessment in the Gulf of Follonica, Tuscany (Northern Tyrrhenian Sea). Mar. Pollut. Bull. 2018, 126, 467–472. [Google Scholar] [CrossRef]
- Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 1988, 175, 184–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Møller, P.; Azqueta, A.; Boutet-Robinet, E.; Koppen, G.; Bonassi, S.; Milić, M.; Gajski, G.; Costa, S.; Teixeira, J.P.; Pereira, C.C.; et al. Minimum Information for Reporting on the Comet Assay (MIRCA): Recommendations for describing comet assay procedures and results. Nat. Protoc. 2020, 15, 3817–3826. [Google Scholar] [CrossRef]
- Guidi, P.; Frenzilli, G.; Benedetti, M.; Bernardeschi, M.; Falleni, A.; Fattorini, D.; Regoli, F.; Scarcelli, V.; Nigro, M. Antioxidant, genotoxic and lysosomal biomarkers in the freshwater bivalve (Unio pictorum) transplanted in a metal polluted river basin. Aquat. Toxicol. 2010, 100, 75–83. [Google Scholar] [CrossRef]
- Kumaravel, T.; Jha, A.N. Reliable Comet assay measurements for detecting DNA damage induced by ionising radiation and chemicals. Mutat. Res. 2006, 605, 7–16. [Google Scholar] [CrossRef]
- Scarpato, R.; Migliore, L.; Barale, R. The micronucleus assay in Anodonta cygnea for the detection of drinking water mutagenicity. Mutat. Res. 1990, 245, 231–237. [Google Scholar] [CrossRef]
- Fenech, M. Cytokinesis-block micronucleus cytome assay. Nat. Protoc. 2007, 2, 1084–1104. [Google Scholar] [CrossRef] [Green Version]
- Thomas, P.; Fenech, M. Cytokinesis-Block Micronucleus Cytome Assay in Lymphocytes. Methods Mol Biol. 2010, 682, 217–234. [Google Scholar] [CrossRef]
- Hussain, A.; Rehman, F.; Rafeeq, H.; Waqas, M.; Asghar, A.; Afsheen, N.; Rahdar, A.; Bilal, M.; Iqbal, H.M. In-situ, Ex-situ, and nano-remediation strategies to treat polluted soil, water, and air—A review. Chemosphere 2022, 289, 133252. [Google Scholar] [CrossRef] [PubMed]
- Shevah, Y.; Waldman, M. In-situ and on-site treatment of groundwater (Technical Report). Pure Appl. Chem. 1995, 67, 1549–1561. [Google Scholar] [CrossRef]
- Sun, X.F.; Liu, B.; Jing, Z.; Wang, H. Preparation and adsorption property of xylan/poly (acrylic acid) magnetic nano-composite hydrogel adsorbent. Carbohydr. Polym. 2015, 118, 16–23. [Google Scholar] [CrossRef]
- Fenech, M.; Knasmueller, S.; Bolognesi, C.; Holland, N.; Bonassi, S.; Kirsch-Volders, M. Micronuclei as biomarkers of DNA damage, aneuploidy, inducers of chromosomal hypermutation and as sources of pro-inflammatory DNA in humans. Mutat. Res. 2020, 786, 108342. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Han, S.; Zhang, J.; Liu, Y.; Chen, Z.; Jia, G. Advances in genotoxicity of titanium dioxide nanoparticles in vivo and in vitro. Nanoimpact 2022, 25, 100377. [Google Scholar] [CrossRef]
- Bolognesi, C.; Landini, E.; Roggieri, P.; Fabbri, R.; Viarengo, A. Genotoxicity biomarkers in the assessment of heavy metal effects in mussels: Experimental studies. Environ. Mol. Mutagen. 1999, 33, 287–292. [Google Scholar] [CrossRef]
- Erbe, M.C.L.; Ramsdorf, W.A.; Vicari, T.; Cestari, M.M. Toxicity evaluation of water samples collected near a hospital waste landfill through bioassays of genotoxicity piscine micronucleus test and comet assay in fish Astyanax and ecotoxicity Vibrio fischeri and Daphnia magna. Ecotoxicology 2011, 20, 320–328. [Google Scholar] [CrossRef]
- Júnior, F.M.R.D.S.; Fernandes, C.L.F.; Tavella, R.A.; Hoscha, L.C.; Baisch, P.R.M. Genotoxic damage in coelomocytes of Eisenia andrei exposed to urban soils. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2019, 842, 111–116. [Google Scholar] [CrossRef]
Matrices | Water (mg/L) | Freshwater Sediment (mg/L) | |||
---|---|---|---|---|---|
Substance | C | FS | FS + CNS | S | S + CNS |
TOC | 5.16 mg/L | 86.6 | 85.0 | 1.2% | 1.1% |
Contaminant | (µg/L) | (mg/kg) | |||
Aluminum | 17.2 | <1.0 | <1.0 | 18,000 | 16,000 |
Arsenic | <1.0 | 22.6 | 3.96 | 3.85 | 3.13 |
Barium | 26.2 | 163 | 56.7 | 115 | 112 |
Cadmium | <0.5 | <0.5 | <0.5 | 15.9 | 15.8 |
Chrome | <1.0 | 2.13 | <1.0 | 70.2 | 68.5 |
Iron | 15.5 | 1390 | 139 | 23,486 | 21,982 |
Mercury | <0.1 | <0.1 | <0.1 | 0.34 | 0.32 |
Nickel | <1.0 | 19.6 | 1.5 | 47.1 | 36.8 |
Lead | <1.0 | 1.0 | <1.0 | 47.2 | 41.6 |
Copper | 9.0 | 2.1 | <1.0 | 532 | 500 |
Vanadium | <1.0 | 7.6 | <1.0 | 31.6 | 30.5 |
Zinc | 15.1 | 14.2 | <1.0 | 179 | 175 |
EC20 (%) | Max Effect (%) | |||
---|---|---|---|---|
5 min | 15 min | 30 min | Mean ± SD | |
Control | >90 | >90 | >90 | 7.18 ± 1.01 |
FS | >90 | >90 | >90 | 6.62 ± 7.29 |
FS + CNS | >90 | >90 | >90 | −5.37 ± 11.99 |
Mortality (%) | Abbott’s Corrected Mortality (%) | |
---|---|---|
Reference Control | 3.33 | - |
S | 13.33 | 11.54 |
S + CNS | 25.00 | 28.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guidi, P.; Bernardeschi, M.; Palumbo, M.; Buttino, I.; Vitiello, V.; Scarcelli, V.; Chiaretti, G.; Fiorati, A.; Pellegrini, D.; Pontorno, L.; et al. Eco-Friendly Engineered Nanomaterials Coupled with Filtering Fine-Mesh Net as a Promising Tool to Remediate Contaminated Freshwater Sludges: An Ecotoxicity Investigation. Nanomaterials 2023, 13, 396. https://doi.org/10.3390/nano13030396
Guidi P, Bernardeschi M, Palumbo M, Buttino I, Vitiello V, Scarcelli V, Chiaretti G, Fiorati A, Pellegrini D, Pontorno L, et al. Eco-Friendly Engineered Nanomaterials Coupled with Filtering Fine-Mesh Net as a Promising Tool to Remediate Contaminated Freshwater Sludges: An Ecotoxicity Investigation. Nanomaterials. 2023; 13(3):396. https://doi.org/10.3390/nano13030396
Chicago/Turabian StyleGuidi, Patrizia, Margherita Bernardeschi, Mara Palumbo, Isabella Buttino, Valentina Vitiello, Vittoria Scarcelli, Gianluca Chiaretti, Andrea Fiorati, David Pellegrini, Lorenzo Pontorno, and et al. 2023. "Eco-Friendly Engineered Nanomaterials Coupled with Filtering Fine-Mesh Net as a Promising Tool to Remediate Contaminated Freshwater Sludges: An Ecotoxicity Investigation" Nanomaterials 13, no. 3: 396. https://doi.org/10.3390/nano13030396
APA StyleGuidi, P., Bernardeschi, M., Palumbo, M., Buttino, I., Vitiello, V., Scarcelli, V., Chiaretti, G., Fiorati, A., Pellegrini, D., Pontorno, L., Bonciani, L., Punta, C., Corsi, I., & Frenzilli, G. (2023). Eco-Friendly Engineered Nanomaterials Coupled with Filtering Fine-Mesh Net as a Promising Tool to Remediate Contaminated Freshwater Sludges: An Ecotoxicity Investigation. Nanomaterials, 13(3), 396. https://doi.org/10.3390/nano13030396