Carbon Hybrid Materials—Design, Manufacturing, and Applications
Abstract
:1. Introduction to Carbon Nanotube/Carbon Fiber (CNT-CF) Hybrid Materials
2. Carbon Hybrid Material (CHM) Manufacturing
2.1. Carbon Hybrid Materials (CHM) Manufacturing System and Example Materials Produced
2.2. Carbon Hybrid Material Design
2.3. Model of the In-Plane Tensile Strength (Transverse to the Fiber Direction) for CHM Sheet
2.4. A Family of Carbon Hybrid Materials (CHM)
3. Initial Characterization of CNT-CF Hybrid Materials
3.1. Microscopic Analysis of CNT-CF Sheet
3.2. Thermogravimetric Analysis
4. Application Examples
4.1. Air Filtration
4.2. Bioaerosol Filtration
4.3. Zn-CNT Battery
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, R.; Chauhan, D.; Xu, C.; Ng, V.; Hou, G.; Mast, D.; Fialkova, S. Floating Catalyst Reactor Design and Safety Features for Carbon Nanotube Synthesis. In Nanotube Superfiber Materials; William Andrew Publishing: Norwich, NY, USA, 2019; pp. 851–866. ISBN 978-0-12-812667-7. [Google Scholar]
- Chauhan, D.; Pujari, A.; Zhang, G.; Dasgupta, K.; Shanov, V.N.; Schulz, M.J. Effect of a Metallocene Catalyst Mixture on CNT Yield Using the FC-CVD Process. Catalysts 2022, 12, 287. [Google Scholar] [CrossRef]
- Chauhan, D.; Hou, G.; Ng, V.; Chaudhary, S.; Paine, M.; Moinuddin, K.; Rabiee, M.; Cahay, M.; Lalley, N.; Shanov, V.; et al. Multifunctional Smart Composites with Integrated Carbon Nanotube Yarn and Sheet. In A Tribute Conference Honoring Daniel Inman; Leo, D.J., Tarazaga, P.A., Eds.; International Society for Optics and Photonics: Bellingham, WA, USA, 2017; Volume 10172, p. 1017205. [Google Scholar]
- Song, Y.; Chauhan, D.; Hou, G.; Wen, X.; Kattoura, M.; Christine, R.; Vesselin, S. Carbon Nanotube Sheet Reinforced Laminated Composites. In Proceedings of the American Society for Composites: 31st Technical Conference, Williamsburg, VA, USA, 19–22 September 2016. [Google Scholar]
- Chauhan, D. Manufacturing and Applications of Carbon Nanotube Sheet and Thread. Ph.D. Thesis, University of Cincinnati, Cincinnati, OH, USA, 2018. [Google Scholar]
- Chitranshi, M.; Chauhan, D.; Kubley, A.; Pujari, A.; Xu, C.; Chen, D.; Chaudhary, S.; Hou, G.; Bell, G.; Brandewie, B.; et al. Pioneering Carbon Nanotube Textile Engineering & Fashion Technology. J. Text. Eng. Fash. Technol. 2019, 5, 89–92. [Google Scholar] [CrossRef]
- Chauhan, D.; Chen, R.; Xu, C.; Mast, D.; Kleismit, R.; Kubley, A.; Hou, G.; Chitranshi, M.; Pujari, A.; Devarakonda, S.; et al. Carbon Nanotube Hybrid Fabric and Tape. In Nanotube Superfiber Materials; William Andrew Publishing: Norwich, NY, USA, 2019; pp. 239–261. ISBN 978-0-12-812667-7. [Google Scholar]
- Kubley, A.; Chauhan, D.; Kanakaraj, S.N.; Xu, C.; Chen, R.; Ng, V.; Bell, G.; Verma, P.; Hou, X.; Chitranshi, M.; et al. Smart Textiles and Wearable Technology Innovation with Carbon Nanotube Technology. In Nanotube Superfiber Materials; William Andrew Publishing: Norwich, NY, USA, 2019; pp. 263–311. ISBN 978-0-12-812667-7. [Google Scholar]
- Chitranshi, M.; Pujari, A.; Ng, V.; Chen, D.; Chauhan, D.; Hudepohl, R.; Saleminik, M.; Kim, S.Y.; Kubley, A.; Shanov, V.; et al. Carbon Nanotube Sheet-Synthesis and Applications. Nanomaterials 2020, 10, 2023. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, D.; Xu, C.; Chen, D.; Kubley, A.; Brandewie, B.; Hou, G.; Li, W.; Ng, V.; Rabiee, M.; Cahay, M.; et al. Introduction to Carbon Nanotube Hybrid Textiles. J. Text. Sci. Fash. Technol. 2019, 1, 1–7. [Google Scholar] [CrossRef]
- Hou, G.; Mast, D.; Kleismit, R.; Chauhan, D.; Xu, C.; Dugre, J.; Ng, V.; Turgut, Z.; Chen, R. Industrializing Nanotube Superfiber Materials. In Nanotube Superfiber Materials; William Andrew Publishing: Norwich, NY, USA, 2019; pp. 573–601. ISBN 978-0-12-812667-7. [Google Scholar]
- Martulli, L.M.; Muyshondt, L.; Kerschbaum, M.; Pimenta, S.; Lomov, S.V.; Swolfs, Y. Carbon Fibre Sheet Moulding Compounds with High In-Mould Flow: Linking Morphology to Tensile and Compressive Properties. Compos. Part A Appl. Sci. Manuf. 2019, 126, 105600. [Google Scholar] [CrossRef]
- Zhong, X.-H.; Li, Y.-L.; Liu, Y.-K.; Qiao, X.-H.; Feng, Y.; Liang, J.; Jin, J.; Zhu, L.; Hou, F.; Li, J.-Y. Continuous Multilayered Carbon Nanotube Yarns. Adv. Mater. 2010, 22, 692–696. [Google Scholar] [CrossRef]
- Andrew, J.J.; Srinivasan, S.M.; Arockiarajan, A.; Dhakal, H.N. Parameters Influencing the Impact Response of Fiber-Reinforced Polymer Matrix Composite Materials: A Critical Review. Compos. Struct. 2019, 224, 111007. [Google Scholar] [CrossRef]
- Tang, H.; Chen, Z.; Avinesh, O.; Guo, H.; Meng, Z.; Engler-Pinto, C.; Kang, H.; Su, X. Notch Insensitivity in Fatigue Failure of Chopped Carbon Fiber Chip-Reinforced Composites Using Experimental and Computational Analysis. Compos. Struct. 2020, 244, 112280. [Google Scholar] [CrossRef]
- Grund, D.; Orlishausen, M.; Taha, I. Determination of Fiber Volume Fraction of Carbon Fiber-Reinforced Polymer Using Thermogravimetric Methods. Polym. Test. 2019, 75, 358–366. [Google Scholar] [CrossRef]
- Lee, G.; Sung, M.; Youk, J.H.; Lee, J.; Yu, W.-R. Improved Tensile Strength of Carbon Nanotube-Grafted Carbon Fiber Reinforced Composites. Compos. Struct. 2019, 220, 580–591. [Google Scholar] [CrossRef]
- Pratyush Behera, R.; Rawat, P.; Kumar Tiwari, S.; Kumar Singh, K. A Brief Review on the Mechanical Properties of Carbon Nanotube Reinforced Polymer Composites. Mater. Today Proc. 2019, 22, 2109–2117. [Google Scholar] [CrossRef]
- Bisht, A.; Dasgupta, K.; Lahiri, D. Investigating the Role of 3D Network of Carbon Nanofillers in Improving the Mechanical Properties of Carbon Fiber Epoxy Laminated Composite. Compos. Part A Appl. Sci. Manuf. 2019, 126, 105601. [Google Scholar] [CrossRef]
- Kamae, T.; Drzal, L.T. Carbon Fiber/Epoxy Composite Property Enhancement through Incorporation of Carbon Nanotubes at the Fiber-Matrix Interphase—Part II: Mechanical and Electrical Properties of Carbon Nanotube Coated Carbon Fiber Composites. Compos. Part A Appl. Sci. Manuf. 2022, 160, 107023. [Google Scholar] [CrossRef]
- Guzman de Villoria, R.; Hallander, P.; Ydrefors, L.; Nordin, P.; Wardle, B.L. In-Plane Strength Enhancement of Laminated Composites via Aligned Carbon Nanotube Interlaminar Reinforcement. Compos. Sci. Technol. 2016, 133, 33–39. [Google Scholar] [CrossRef]
- Ou, Y.; González, C.; Vilatela, J.J. Interlaminar Toughening in Structural Carbon Fiber/Epoxy Composites Interleaved with Carbon Nanotube Veils. Compos. Part A Appl. Sci. Manuf. 2019, 124, 105477. [Google Scholar] [CrossRef] [Green Version]
- Schulz, M.J.; Hou, G.; Ng, V.; Rabiee, M.; Cahay, M.; Chaudhary, S.; Lindley, D.; Chauhan, D.; Paine, M.; Vijayakumar, D.; et al. Science to Commercialization of Carbon Nanotube Sheet and Yarn. WSEAS Trans. Appl. Theor. Mechan. 2017, 12, 40–50. [Google Scholar]
- Xu, C.; Chauhan, D.; Hou, G.; Ng, V.; Song, Y.; Paine, M. Synthesis of Hybrid Carbon Nanotube Yarn and Sheet and Their Applications. In Nanotube Superfiber Materials; William Andrew Publishing: Norwich, NY, USA, 2019; pp. 897–914. ISBN 978-0-12-812667-7. [Google Scholar]
- Schulz, M.J.; Kanakaraj, S.; Mast, D.; Shanov, V.; Chauhan, D.; Hou, G.; Ng, V.; Xu, C.; Chen, R.D.; Kubley, A.; et al. Carbon Nanotube Hybrid Material Fabric, Composite Fabric, and Personal Protective Apparel and Equipment. U.S. Patent Application 16/629,714, 27 August 2020. [Google Scholar]
- Duongthipthewa, A.; Su, Y.; Zhou, L. Electrical Conductivity and Mechanical Property Improvement by Low-Temperature Carbon Nanotube Growth on Carbon Fiber Fabric with Nanofiller Incorporation. Compos. Part B Eng. 2020, 182, 107581. [Google Scholar] [CrossRef]
- Mallick, P.K. Performance. In Fiber-Reinforced Composites; CRC Press: London, UK; New York, NY, USA, 2007; ISBN 978-0-429-12206-4. [Google Scholar]
- Boorle, R.K.; Mallick, P.K. Global Bending Response of Composite Sandwich Plates with Corrugated Core: Part I: Effect of Geometric Parameters. Compos. Struct. 2016, 141, 375–388. [Google Scholar] [CrossRef]
- Manufacturing of Composites (Dr. J. Ramkumar, IIT Kanpur) | Mechanical Engineering | Audio/Video Courses. Available online: http://www.infocobuild.com/education/audio-video-courses/mechanical-engineering/manufacturing-of-composites-iit-kanpur.html (accessed on 29 September 2022).
- Kim, M.T.; Rhee, K.Y.; Lee, J.H.; Hui, D.; Lau, A.K.T. Property Enhancement of a Carbon Fiber/Epoxy Composite by Using Carbon Nanotubes. Compos. Part B Eng. 2011, 42, 1257–1261. [Google Scholar] [CrossRef]
- Hou, G.; Chauhan, D.; Ng, V.; Xu, C.; Yin, Z.; Paine, M.; Su, R.; Shanov, V.; Mast, D.; Schulz, M.; et al. Gas Phase Pyrolysis Synthesis of Carbon Nanotubes at High Temperature. Mater. Des. 2017, 132, 112–118. [Google Scholar] [CrossRef]
- Kim, S.; Chitranshi, M.; Pujari, A.; Ng, V.; Kubley, A.; Hudepohl, R.; Shanov, V.; Anantharaman, D.; Chen, D.; Chauhan, D.; et al. Reactor Design for Manufacturing Carbon Hybrid Materials. Adv. Mater. Lett. 2022, 13, 2201-1685. [Google Scholar] [CrossRef]
- Kim, S.; Chitranshi, M.; Pujari, A.; Ng, V.; Kubley, A.; Hudepohl, R.; Shanov, V.; Anantharaman, D.; Chen, D.; Chauhan, D.; et al. Synthesis Tuning for Manufacturing Carbon Hybrid Materials. Adv. Mater. Lett. 2022, 12, 1–8. [Google Scholar] [CrossRef]
- Schulz, M.; Shanov, V.N.; Kim, S.Y.; Mast, D.; Chauhan, D.; CHEN, R.D.; Ng, V.; Chitranshi, M.; Pujari, A.; Hudepohl, R.; et al. Carbon Hybrid Materials—By Design. Vid. Proc. Adv. Mater. 2021, 2, 2108206. [Google Scholar] [CrossRef]
- Li, T.; Li, M.; Gu, Y.; Wang, S.; Li, Q.; Zhang, Z. Mechanical Enhancement Effect of the Interlayer Hybrid CNT Film/Carbon Fiber/Epoxy Composite. Compos. Sci. Technol. 2018, 166, 176–182. [Google Scholar] [CrossRef]
- Zhou, H.W.; Mishnaevsky, L.; Yi, H.Y.; Liu, Y.Q.; Hu, X.; Warrier, A.; Dai, G.M. Carbon Fiber/Carbon Nanotube Reinforced Hierarchical Composites: Effect of CNT Distribution on Shearing Strength. Compos. Part B Eng. 2016, 88, 201–211. [Google Scholar] [CrossRef] [Green Version]
- Carbon Fiber-Carbon Nanotube Yarn Hybrid Reinforcement | T2 Portal. Available online: https://technology.nasa.gov/patent/LEW-TOPS-154 (accessed on 24 October 2022).
- Cheung, C.L.; Kurtz, A.; Park, H.; Lieber, C.M. Diameter-Controlled Synthesis of Carbon Nanotubes. J. Phys. Chem. B 2002, 106, 2429–2433. [Google Scholar] [CrossRef]
- Weller, L.; Smail, F.R.; Elliott, J.A.; Windle, A.H.; Boies, A.M.; Hochgreb, S. Mapping the Parameter Space for Direct-Spun Carbon Nanotube Aerogels. Carbon 2019, 146, 789–812. [Google Scholar] [CrossRef]
- Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chemistry of Carbon Nanotubes. Chem. Rev. 2006, 106, 1105–1136. [Google Scholar] [CrossRef]
- Špitalský, Z.; Aggelopoulos, C.; Tsoukleri, G.; Tsakiroglou, C.; Parthenios, J.; Georga, S.; Krontiras, C.; Tasis, D.; Papagelis, K.; Galiotis, C. The Effect of Oxidation Treatment on the Properties of Multi-Walled Carbon Nanotube Thin Films. Mater. Sci. Eng. B 2009, 165, 135–138. [Google Scholar] [CrossRef]
- Li, P.; Wang, C.; Zhang, Y.; Wei, F. Air Filtration in the Free Molecular Flow Regime: A Review of High-Efficiency Particulate Air Filters Based on Carbon Nanotubes. Small 2014, 10, 4543–4561. [Google Scholar] [CrossRef]
- Park, S.J.; Lee, D.G. Development of CNT-Metal-Filters by Direct Growth of Carbon Nanotubes. Curr. Appl. Phys. 2006, 6, e182–e186. [Google Scholar] [CrossRef]
- Halonen, N.; Rautio, A.; Leino, A.-R.; Kyllönen, T.; Tóth, G.; Lappalainen, J.; Kordás, K.; Huuhtanen, M.; Keiski, R.L.; Sápi, A.; et al. Three-Dimensional Carbon Nanotube Scaffolds as Particulate Filters and Catalyst Support Membranes. ACS Nano 2010, 4, 2003–2008. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Pinault, M.; Pfefferle, L.D.; Elimelech, M. Single-Walled Carbon Nanotubes Exhibit Strong Antimicrobial Activity. Langmuir 2007, 23, 8670–8673. [Google Scholar] [CrossRef] [PubMed]
- Brady-Estévez, A.S.; Schnoor, M.H.; Kang, S.; Elimelech, M. SWNT−MWNT Hybrid Filter Attains High Viral Removal and Bacterial Inactivation. Langmuir 2010, 26, 19153–19158. [Google Scholar] [CrossRef] [PubMed]
- Guan, T.; Yao, M. Use of Carbon Nanotube Filter in Removing Bioaerosols. J. Aerosol Sci. 2010, 41, 611–620. [Google Scholar] [CrossRef]
- Park, J.H.; Yoon, K.Y.; Na, H.; Kim, Y.S.; Hwang, J.; Kim, J.; Yoon, Y.H. Fabrication of a Multi-Walled Carbon Nanotube-Deposited Glass Fiber Air Filter for the Enhancement of Nano and Submicron Aerosol Particle Filtration and Additional Antibacterial Efficacy. Sci. Total Environ. 2011, 409, 4132–4138. [Google Scholar] [CrossRef]
- Zou, Z.; Yao, M. Airflow Resistance and Bio-Filtering Performance of Carbon Nanotube Filters and Current Facepiece Respirators. J. Aerosol Sci. 2015, 79, 61–71. [Google Scholar] [CrossRef]
- Kim, J.P.; Kim, J.H.; Kim, J.; Lee, S.N.; Park, H.-O. A Nanofilter Composed of Carbon Nanotube-Silver Composites for Virus Removal and Antibacterial Activity Improvement. J. Environ. Sci. 2016, 42, 275–283. [Google Scholar] [CrossRef]
- Nanotechnology Breakthrough Delivers ‘Game-Changing’ EV Battery Performance. Electric & Hybrid Vehicle Technology International. 2020. Available online: https://www.electrichybridvehicletechnology.com/news/materials-research/nanotechnology-breakthrough-delivers-game-changing-ev-battery-performance.html (accessed on 24 October 2022).
- Power Japan Plus Reveals New Ryden Dual Carbon Battery. Available online: https://www.businesswire.com/news/home/20140513005472/en/Power-Japan-Plus-Reveals-New-Ryden-Dual-Carbon-Battery (accessed on 23 October 2022).
- How Carbon Nanotubes Could Lead the Way in Next-Generation Smart Fabrics. Available online: https://www.azonano.com/article.aspx?ArticleID=5549 (accessed on 24 October 2022).
- Galvanic Series. Available online: https://en.wikipedia.org/wiki/Galvanic_series (accessed on 24 October 2022).
Composite Material | Vf Epoxy | Vf CF | Vf CNT Fiber |
---|---|---|---|
CFRP (unidirectional) | 0.3 | 0.7 | 0.0 |
CFRP-CNT (unidirectional) | 0.2 | 0.7 | 0.1 |
Material Components | Epoxy | HM CF | CNT Fibric Macroscale | CNT Fibric Microscale |
---|---|---|---|---|
Strength (GPa) | 0.07 | 4.0 | 0.4 | 5.0 |
Composite Material | Strength 0° (GPa) | Strength 90° (GPa) |
---|---|---|
CFRP 0° | 4(0.7) + 0.07(0.3) = 2.82 | 0.07(1) = 0.07 |
CFRP 0°/90° | (2.82 + 0.0)/2 = 1.45 | 1.45 |
CFRP-CNT 0° | 4(0.7) + 0.07(0.2) + 0.4(0.1) = 2.85 | 0.7(0.9) + 5(0.1) = 0.56 |
CFRP-CNT 0°/90° | (2.85 + 0.56)/2 | 1.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pujari, A.; Chauhan, D.; Chitranshi, M.; Hudepohl, R.; Kubley, A.; Shanov, V.; Schulz, M. Carbon Hybrid Materials—Design, Manufacturing, and Applications. Nanomaterials 2023, 13, 431. https://doi.org/10.3390/nano13030431
Pujari A, Chauhan D, Chitranshi M, Hudepohl R, Kubley A, Shanov V, Schulz M. Carbon Hybrid Materials—Design, Manufacturing, and Applications. Nanomaterials. 2023; 13(3):431. https://doi.org/10.3390/nano13030431
Chicago/Turabian StylePujari, Anuptha, Devika Chauhan, Megha Chitranshi, Ronald Hudepohl, Ashley Kubley, Vesselin Shanov, and Mark Schulz. 2023. "Carbon Hybrid Materials—Design, Manufacturing, and Applications" Nanomaterials 13, no. 3: 431. https://doi.org/10.3390/nano13030431
APA StylePujari, A., Chauhan, D., Chitranshi, M., Hudepohl, R., Kubley, A., Shanov, V., & Schulz, M. (2023). Carbon Hybrid Materials—Design, Manufacturing, and Applications. Nanomaterials, 13(3), 431. https://doi.org/10.3390/nano13030431