CoFe Alloy-Coupled Mo2C Wrapped by Nitrogen-Doped Carbon as Highly Active Electrocatalysts for Oxygen Reduction/Evolution Reactions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of CoFe-PBA/PVP and g-C3N4 Precursors
2.2. Synthesis of Fe-N/C Catalyst
2.3. Electrochemical Measurements
3. Results
3.1. Structural and Compositional Analyses
3.2. Electrocatalytic Activities of NG-CoFe/Mo2C-x Catalysts for ORR
3.3. Electrocatalytic Activities of NG-CoFe/Mo2C-x Catalysts for OER
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gu, T.; Sa, R.; Zhang, L.; Li, D.; Wang, R. Engineering interfacial coupling between Mo2C nanosheets and Co@NC polyhedron for boosting electrocatalytic water splitting and zinc-air batteries. Appl. Catal. B 2021, 296, 120360. [Google Scholar] [CrossRef]
- Liu, C.; Tang, Y.; Wang, X.; Huang, W.; Li, S.; Dong, L.; Lan, Y. Highly active Co–Mo–C/NRGO composite as an efficient oxygen electrode for water–oxygen redox cycle. J. Mater. Chem. A 2016, 4, 18100–18106. [Google Scholar] [CrossRef]
- Lian, Y.; Shi, K.; Yang, H.; Sun, H.; Qi, P.; Ye, J.; Wu, W.; Deng, Z.; Peng, Y. Elucidation of active sites on S, N codoped carbon cubes embedding Co-Fe carbides toward reversible oxygen conversion in high-performance zinc-air batteries. Small 2020, 16, 1907368. [Google Scholar] [CrossRef]
- Lu, X.; Chen, Y.; Wang, S.; Gao, S.; Lou, X. Interfacing manganese oxide and cobalt in porous graphitic carbon polyhedrons boosts oxygen electrocatalysis for Zn–air batteries. Adv. Mater. 2019, 31, 1902339. [Google Scholar] [CrossRef]
- Chai, G.; Qiu, K.; Qiao, M.; Titirici, M.; Shang, C.; Guo, Z. Active sites engineering leads to exceptional ORR and OER bifunctionality in P,N Co-doped graphene frameworks. Energy Environ. Sci. 2017, 10, 1186–1195. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.; Yuan, P.; Lv, Z.; Guo, Y.; Qiao, Y.; Xue, X.; Liu, X.; Bai, W.; Wang, K.; Xu, Q.; et al. Boosting defective carbon by anchoring well-defined atomically dispersed metal-N4 sites for ORR, OER, and Zn-air batteries. Appl. Catal. B 2020, 260, 118198. [Google Scholar] [CrossRef]
- Li, M.; Zhu, Y.; Wang, H.; Wang, C.; Pinna, N.; Lu, X. Ni strongly coupled with Mo2C encapsulated in nitrogen-doped carbon nanofibers as robust bifunctional catalyst for overall water splitting. Adv. Energy Mater. 2019, 9, 1803185. [Google Scholar] [CrossRef]
- Kim, M.; Kim, S.; Song, D.; Oh, S.; Chang, K.; Cho, E. Promotion of electrochemical oxygen evolution reaction by chemical coupling of cobalt to molybdenum carbide. Appl. Catal. B 2018, 227, 340–348. [Google Scholar] [CrossRef]
- Liang, Q.; Jin, H.; Wang, Z.; Xiong, Y.; Yuan, S.; Zeng, X.; He, D.; Mu, S. Metal-organic frameworks derived reverse-encapsulation Co-NC@Mo2C complex for efficient overall water splitting. Nano Energy 2019, 7, 746–752. [Google Scholar] [CrossRef]
- Peng, F.; Zhang, L.; Jiang, B.; Dou, H.; Xu, M.; Yang, N.; Zhang, J.; Sun, Y. In-situ synthesis of microflower composed of N-doped carbon films and Mo2C coupled with Ni or FeNi alloy for water splitting. Chem. Eng. J. 2022, 427, 131712. [Google Scholar] [CrossRef]
- Du, Q.; Zhao, R.; Guo, T.; Liu, L.; Chen, X.; Zhang, J.; Du, J.; Li, J.; Mai, L.; Asefa, T. Highly dispersed Mo2C nanodots in carbon nanocages derived from Mo-based xerogel: Efficient electrocatalysts for hydrogen evolution. Small Methods 2021, 5, 2100334. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Tang, J.; Henzie, J.; Jiang, B.; Qian, H.; Wang, Z.; Tan, H.; Bando, Y.; Yamauchi, Y. Assembly of hollow mesoporous nanoarchitectures composed of ultrafine Mo2C nanoparticles on N-doped carbon nanosheets for efficient electrocatalytic reduction of oxygen. Mater. Horiz. 2017, 4, 1171–1177. [Google Scholar] [CrossRef]
- Zhou, Z.; Yuan, Z.; Li, S.; Li, H.; Chen, J.; Wang, Y.; Huang, Q.; Wang, C.; Karahan, H.; Henkelman, G.; et al. Big to small: Ultrafine Mo2C particles derived from giant polyoxomolybdate clusters for hydrogen evolution reaction. Small 2019, 15, 1900358. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Liu, X.; Zhu, B.; Fan, L.; Chai, X.; Zhang, Q.; Liu, J.; He, C.; Lin, Z. Crafting MoC2-doped bimetallic alloy nanoparticles encapsulated within N-doped graphene as roust bifunctional electrocatalysts for overall water splitting. Nano Energy 2018, 50, 212–219. [Google Scholar] [CrossRef]
- Kou, Z.; Yu, Y.; Liu, X.; Gao, X.; Zheng, L.; Zou, H.; Pang, Y.; Wang, Z.; Pan, Z.; He, J.; et al. Potential-dependent phase transition and Mo-enriched surface reconstruction of γ-CoOOH in a heterostructured Co-Mo2C precatalyst enable water oxidation. ACS Catal. 2020, 10, 4411–4419. [Google Scholar] [CrossRef]
- Choi, J.; Lim, J.; Kim, D.; Park, S.; Yan, B.; Ko, D.; Cho, Y.; Lee, L.; Piao, Y. CoFe Prussian blue analogues on 3D porous N-doped carbon nanosheets boost the intercalation kinetics for a high-performance quasi-solid-state hybrid capacitor. J. Mater. Chem. A 2022, 10, 14501–14512. [Google Scholar] [CrossRef]
- Zhan, T.; Liu, X.; Lu, S.; Hou, W. Nitrogen doped NiFe layered double hydroxide/reduced graphene oxide mesoporous nanosphere as an effective bifunctional electrocatalyst for oxygen reduction and evolution reactions. Appl. Catal. B 2017, 205, 551–558. [Google Scholar] [CrossRef]
- Zheng, J.; Kang, T.; Liu, B.; Wang, P.; Li, H.; Yang, M. N-doped carbon nanotubes encapsulated with FeNi nanoparticles derived from defect-rich, molecule-doped 3D g-C3N4 as an efficient bifunctional electrocatalyst for rechargeable zinc–air batteries. J. Mater. Chem. A 2022, 10, 9911–9921. [Google Scholar] [CrossRef]
- Liang, X.; Wang, G.; Gu, W.; Ji, G. Prussian blue analogue derived carbon-based composites toward lightweight microwave absorption. Carbon 2021, 177, 97–106. [Google Scholar] [CrossRef]
- Yuan, S.; Xia, M.; Liu, Z.; Wang, K.; Xiang, L.; Huang, G.; Zhang, J.; Li, N. Dual synergistic effects between Co and Mo2C in Co/Mo2C heterostructure for electrocatalytic overall water splitting. Chem. Eng. J. 2022, 430, 132697. [Google Scholar] [CrossRef]
- Zhu, Q.; Xu, S.; Harris, M.; Ma, C.; Liu, Y.; Wei, X.; Xu, H.; Zhou, Y.; Cao, Y.; Wang, K.; et al. A composite of carbon-wrapped Mo2C nanoparticle and carbon nanotube formed directly on Ni foam as a high-performance binder-free cathode for Li−O2 batteries. Adv. Funct. Mater. 2016, 26, 8514–8520. [Google Scholar] [CrossRef]
- Qiu, H.; Du, P.; Hu, K.; Gao, J.; Li, H.; Liu, P.; Lna, T.; Ohara, K.; Ito, Y.; Chen, M. Metal and nonmetal codoped 3D nanoporous graphene for efficient bifunctional electrocatalysis and rechargeable Zn-air batteries. Adv. Mater. 2019, 31, 1900843. [Google Scholar] [CrossRef]
- Huang, T.; Niu, Y.; Yang, Q.; Yang, W.; Xu, M. Self-template synthesis of prussian blue analogue hollow polyhedrons as superior sodium storage cathodes. ACS Appl. Mater. Interfaces 2021, 13, 37187–37193. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, B.; Peng, X.; Ding, Y.; Yu, S.; Zhang, F.; Zhang, L.; Wu, H.; Guo, J. Design and preparation of polyoxometalate-based catalyst [MIMPs]3PMo6W6O40 and its application in deep oxidative desulfurization with excellent recycle performance and low molar O/S ratio. Chem. Eng. J. 2022, 429, 132446. [Google Scholar] [CrossRef]
- Pendashteh, A.; Palma, J.; Anderson, M.; Marcilla, R. NiCoMnO4 nanoparticles on N-doped graphene: Highly efficient bifunctional electrocatalyst for oxygen reduction/evolution reactions. Appl. Catal. B 2017, 201, 241–252. [Google Scholar] [CrossRef]
- Yang, C.; Zai, S.; Zhou, Y.; Du, L.; Jiang, Q. Fe3C-Co nanoparticles encapsulated in a hierarchical structure of N-doped carbon as a multifunctional electrocatalyst for ORR, OER, and HER. Adv. Funct. Mater. 2019, 29, 1901949. [Google Scholar] [CrossRef]
- Amiinu, I.; Liu, X.; Pu, Z.; Li, W.; Li, Q.; Zhang, J.; Tang, H.; Zhang, H.; Mu, S. From 3D ZIF nanocrystals to Co-Nx /C nanorod array electrocatalysts for ORR, OER, and Zn-air batteries. Adv. Funct. Mater. 2018, 28, 1704638. [Google Scholar] [CrossRef]
- Marshall-Roth, T.; Libretto, N.; Wrobel, A.; Anderton, K.; Pegis, M.; Ricke, N.; Voorhis, T.; Miller, J.; Surendranath, Y. A pyridinic Fe-N4 macrocycle models the active sites in Fe/N-doped carbon electrocatalysts. Nat. Commun. 2020, 11, 5283. [Google Scholar] [CrossRef] [PubMed]
- Karuppannan, M.; Kim, Y.; Sung, Y.; Kwon, O. Nitrogen-rich hollow carbon spheres decorated with FeCo/fluorine-rich carbon for high performance symmetric supercapacitors. J. Mater. Chem. A 2018, 6, 7522–7531. [Google Scholar] [CrossRef]
- Xu, F.; Wang, J.; Zhang, Y.; Wang, W.; Guan, T.; Wang, N.; Li, K. Structure-engineered bifunctional oxygen electrocatalysts with Ni3S2 quantum dot embedded S/N-doped carbon nanosheets for rechargeable Zn-air batteries. Chem. Eng. J. 2022, 432, 134256. [Google Scholar] [CrossRef]
- Rossmeisl, J.; Logadottir, A.; Nørskov, J.K. Electrolysis of water on (oxidized) metal surfaces. Chem. Phys. 2005, 319, 178–184. [Google Scholar] [CrossRef]
- Das, D.; Santra, S.; Nanda, K. In situ fabrication of a nickel/molybdenum carbide-anchored N-doped graphene/CNT hybrid: An efficient (pre)catalyst for OER and HER. ACS Appl. Mater. Interfaces 2018, 10, 35025–35038. [Google Scholar] [CrossRef]
- Mo, Y.; Lin, J.; Li, S.; Yu, J. Anchoring Mo2C nanoparticles on vertical graphene nanosheets as a highly efficient catalytic interlayer for Li-S batteries. Chem. Eng. J. 2022, 433, 134306. [Google Scholar] [CrossRef]
- Li, G.; Tang, Y.; Fu, T.; Xiang, Y.; Xiong, Z.; Si, Y.; Guo, C.; Jiang, Z.S. N co-doped carbon nanotubes coupled with CoFe nanoparticles as an efficient bifunctional ORR/OER electrocatalyst for rechargeable Zn-air batteries. Chem. Eng. J. 2022, 429, 132174. [Google Scholar] [CrossRef]
- Yu, Y.; You, S.; Du, J.; Zhang, P.; Dai, Y.; Liu, M.; Jiang, B.; Ren, N.; Zou, J. Ti3+-self-doped TiO2 with multiple crystal-phases anchored on acid-pickled ZIF-67-derived Co3O4@N-doped graphitized-carbon as a durable catalyst for oxygen reduction in alkaline and acid media. Chem. Eng. J. 2021, 403, 1385–8947. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Dai, Y.; Li, X.; Shao, C.; Sun, Y.; Wang, R.; Zou, J. Co3O4@carbon with high Co2+/Co3+ ratios derived from ZIF-67 supported on N-doped carbon nanospheres as stable bifunctional oxygen catalysts. Mater. Today Energy 2021, 21, 100737. [Google Scholar] [CrossRef]
- Fan, X.; Liu, Y.; Peng, Z.; Zhang, Z.; Zhou, H.; Zhang, X.; Yakobson, B.; Goddard, W.; Guo, X.; Hauge, R.; et al. Atomic H-induced Mo2C hybrid as an active and stable bifunctional electrocatalyst. ACS Nano 2017, 11, 384–394. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Wang, Z.; Fu, Y.; Jin, C.; Wei, Q.; Yang, R. In situ preparation of hollow Mo2C–C hybrid microspheres as bifunctional electrocatalysts for oxygen reduction and evolution reactions. J. Mater. Chem. A 2016, 4, 12583–12590. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, X.; Zhou, C.; Du, S.; Zhen, D.; Chen, B.; Li, J.; Wu, Q.; Lru, Y.; Chen, D. A modulated electronic state strategy designed to integrate active HER and OER components as hybrid heterostructures for efficient overall water splitting. Appl. Catal. B 2020, 260, 118197. [Google Scholar] [CrossRef]
- Shah, S.; Paidi, V.; Jung, H.; Kim, S.; Lee, G.; Han, J.; Lee, K.; Park, J. Unprecedented electrocatalytic oxygen evolution performances by cobalt-incorporated molybdenum carbide microflowers with controlled charge re-distribution. J. Mater. Chem. A 2021, 9, 1770–1783. [Google Scholar] [CrossRef]
- Regmi, Y.; Waetzig, G.; Duffee, K.; Schmuecker, S.; Thode, J.; Leonard, B. Carbides of group IVA, VA and VIA transition metals as alternative HER and ORR catalysts and support materials. J. Mater. Chem. A 2015, 3, 10085–10091. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, T.; Zang, W.; Kou, Z.; Ma, Y.; Waqar, M.; Liu, X.; Zheng, L.; Pennycook, S.; Liu, Z.; et al. Quasi-paired Pt atomic sites on Mo2C promoting selective four-electron oxygen reduction. Adv. Sci. 2021, 8, 2101344. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Liu, H.; Zhang, H.; Chen, W.; Sun, H.; Wang, Z.; Zhang, B.; Song, L.; Yang, Y.; Ma, C.; et al. A pH-universal ORR catalyst with single-atom iron sites derived from a double-layer MOF for superior flexible quasi-solid-state rechargeable Zn–air batteries. Energy Environ. Sci. 2021, 14, 6455–6463. [Google Scholar] [CrossRef]
- Wei, H.; Xi, Q.; Chen, X.; Guo, D.; Ding, F.; Yang, Z.; Wang, S.; Li, J.; Huang, S. Molybdenum carbide nanoparticles coated into the graphene wrapping N-doped porous carbon microspheres for highly efficient electrocatalytic hydrogen evolution both in acidic and alkaline media. Adv. Sci. 2018, 5, 1700733. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Gao, J.; Zhang, F.; Qian, Q.; Liu, Y.; Zhang, G. Hierarchical 3D macrosheets composed of interconnected in situ cobalt catalyzed nitrogen doped carbon nanotubes as superior bifunctional oxygen electrocatalysts for rechargeable Zn–air batteries. J. Mater. Chem. A 2018, 6, 15523–15529. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, H.; Lin, R.; Lei, H.; Yuan, Y.; Zhu, Z.; Li, X.; Mai, W. Theoretical calculation guided electrocatalysts design: Nitrogen saturated porous Mo2C nanostructures for hydrogen production. Appl. Catal. B 2019, 257, 117891. [Google Scholar] [CrossRef]
- Du, C.; Huang, H.; Wu, Y.; Wu, S.; Song, W. Ultra-efficient electrocatalytic hydrogen evolution at one-step carbonization generated molybdenum carbide nanosheets/N-doped carbon. Nanoscale 2016, 8, 16251–16258. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, H.; Wang, Y.; Liu, L.; Qin, W.; Liu, S.; Liu, J.; Qin, Y.; Zhang, D.; Chu, A.; et al. Sulfur coordination engineering of molybdenum single-atom for dual-functional oxygen reduction/evolution catalysis. Energy Storage Mater. 2022, 50, 186–195. [Google Scholar] [CrossRef]
- Chen, B.; He, X.; Yin, F.; Wang, H.; Liu, D.; Shi, R.; Chen, J.; Yin, H. MO-Co@N-doped carbon (M = Zn or Co): Vital roles of inactive Zn and highly efficient activity toward oxygen reduction/evolution reactions for rechargeable Zn-air battery. Adv. Funct. Mater. 2017, 27, 1700795. [Google Scholar] [CrossRef]
- Zhu, Z.; Yin, H.; Wang, Y.; Chuang, C.; Xing, L.; Dong, M.; Lu, Y.; Casillas-Garcia, G.; Zheng, Y.; Chen, S.; et al. Coexisting single-atomic Fe and Ni sites on hierarchically ordered porous carbon as a highly efficient ORR electrocatalyst. Adv. Mater. 2020, 32, 2004670. [Google Scholar] [CrossRef]
- Tavakkoli, M.; Flahaut, E.; Peljo, P.; Sainio, J.; Davodi, F.; Lobiak, E.; Mustonen, K.; Kauppinen, E. Mesoporous single-atom-doped graphene–carbon nanotube hybrid: Synthesis and tunable electrocatalytic activity for oxygen evolution and reduction reactions. ACS Catal. 2020, 10, 4647–4658. [Google Scholar] [CrossRef] [Green Version]
- Ahn, C.; Yang, W.; Kim, J.; Priyanga, G.; Thomas, T.; Deshpande, N.; Lee, H.; Cho, H. Design of hydrangea-type Co/Mo bimetal MOFs and MOF-derived Co/Mo2C embedded carbon composites for highly efficient oxygen evolution reaction. Chem. Eng. J. 2022, 435, 134815. [Google Scholar] [CrossRef]
- Lee, J.H.; Kattel, S.; Wang, Y.; Tackett, B.M.; Xie, Z.; Hwang, S.; Denny, S.R.; Xu, W.; Chen, J.G. Prussian blue analogues as platform materials for understanding and developing oxygen evolution reaction electrocatalysts. Chin. J. Catal. 2021, 393, 390–398. [Google Scholar] [CrossRef]
- Ouyang, T.; Ye, Y.; Wu, C.; Xiao, K.; Liu, Z. Heterostructures composed of N-doped carbon nanotubes encapsulating cobalt and beta-Mo2C nanoparticles as bifunctional electrodes for water splitting. Angew Chem. Int. Ed. 2019, 58, 4923–4928. [Google Scholar] [CrossRef]
- Wu, X.; He, S.; Kong, Q.; An, X.; Yao, W.; Feng, W.; Wang, Q.; Qian, L.; Xiang, Z. Urchin-liked FexCo1-x/CoOOH/FeOOH nanoparticles for highly efficient oxygen evolution reaction. Appl. Surf. Sci. 2022, 577, 151830. [Google Scholar] [CrossRef]
- Wang, T.; Long, X.; Wei, S.; Wang, P.; Wang, C.; Jin, J.; Hu, G. Boosting hole transfer in the fluorine-doped hematite photoanode by depositing ultrathin amorphous FeOOH/CoOOH cocatalysts. ACS Appl. Mater. Interfaces 2020, 12, 49705–49712. [Google Scholar] [CrossRef]
- Yin, X.; Dai, X.; Nie, F.; Gan, Y.; Ye, Y.; Ren, Z.; Liu, Y.; Wu, B.; Cao, Y.; Zhang, X. Electronic modulation and surface reconstruction of cactus-like CoB2O4@FeOOH heterojunctions for synergistically triggering oxygen evolution reactions. J. Mater. Chem. A 2022, 10, 11386–11393. [Google Scholar] [CrossRef]
- Li, F.; Ai, H.; Liu, D.; Lo, K.; Pan, H. An enhanced oxygen evolution reaction on 2D CoOOH via strain engineering: An insightful view from spin state transition. J. Mater. Chem. A 2021, 9, 17749–17759. [Google Scholar] [CrossRef]
- Cheng, H.; Zhuang, Y.; Meng, C.; Chen, B.; Chen, J.; Yuan, A.; Zhou, H. Ultrafine CoFe nanoparticles supported on nitrogen-doped carbon sheets boost oxygen electrocatalysis for Zn-air batteries. Appl. Surf. Sci. 2023, 607, 154953. [Google Scholar] [CrossRef]
- Han, N.; Luo, S.; Deng, C.; Zhu, S.; Xu, Q.; Min, Y. Defect-rich FeN0.023/Mo2C heterostructure as a highly efficient bifunctional catalyst for overall water-splitting. ACS Appl. Mater. Interfaces 2021, 13, 8306–8314. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, F.; Zhang, S.; Fisher, A.; Zhou, Y.; Wang, Z.; Li, Y.; Xu, B.; Li, J.; Sun, S. Interfacial interaction between FeOOH and Ni–Fe LDH to modulate the local electronic structure for enhanced OER electrocatalysis. ACS Catal. 2018, 8, 11342–11351. [Google Scholar] [CrossRef]
- Ma, X.; Chai, H.; Cao, Y.; Xu, J.; Wang, Y.; Dong, H.; Jia, D.; Zhou, W. An effective bifunctional electrocatalysts: Controlled growth of CoFe alloy nanoparticles supported on N-doped carbon nanotubes. J. Colloid Interface Sci. 2018, 514, 656–663. [Google Scholar] [CrossRef]
- Feng, J.; Xu, H.; Dong, Y.; Ye, S.; Tong, Y.; Li, G. FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction. Angew Chem. Int. Ed. 2016, 55, 3694–3698. [Google Scholar] [CrossRef]
- Chen, Z.; Kronawitter, C.; Yeh, Y.; Yang, X.; Zhao, P.; Yao, N.; Koel, B. Activity of pure and transition metal-modified CoOOH for the oxygen evolution reaction in an alkaline medium. J. Mater. Chem. A 2017, 5, 842–850. [Google Scholar] [CrossRef]
- Ye, S.; Wang, J.; Hu, J.; Chen, Z.; Zheng, L.; Fu, Y.; Lei, Y.; Ren, X.; He, C.; Zhang, Q.; et al. Electrochemical construction of low-crystalline CoOOH nanosheets with short-range ordered grains to improve oxygen evolution activity. ACS Catal. 2021, 11, 6104–6112. [Google Scholar] [CrossRef]
- Anantharaj, S.; Kundu, S.; Noda, S. “The Fe effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy 2021, 80, 105514. [Google Scholar] [CrossRef]
- Du, P.; Hu, K.; Lyu, J.; Li, H.; Lin, X.; Xie, G.; Liu, X.; Ito, Y.; Qiu, H. Anchoring Mo single atoms/clusters and N on edge-rich nanoporous holey graphene as bifunctional air electrode in Zn−air batteries. Appl. Catal. B 2020, 276, 119172. [Google Scholar] [CrossRef]
- Tang, L.; Yu, L.; Ma, C.; Song, Y.; Tu, Y.; Zhang, Y.; Bo, X.; Deng, D. Three-dimensional CoOOH nanoframes confining high-density Mo single atoms for large-current-density oxygen evolution. J. Mater. Chem. A 2022, 10, 6242–6250. [Google Scholar] [CrossRef]
- Niu, J.; Shao, R.; Liang, J.; Dou, M.; Li, Z.; Huang, Y.; Wang, F. Biomass-derived mesopore-dominant porous carbons with large specific surface area and high defect density as high-performance electrode materials for Li-ion batteries and supercapacitors. Nano Energy 2017, 36, 322–330. [Google Scholar] [CrossRef]
- Ji, S.M.; Muthurasu, A.; Chhetri, K.; Kim, H.Y. Metal-organic framework assisted vanadium oxide nanorods as efficient electrode materials for water oxidation. J. Colloid Interface Sci. 2022, 618, 475–482. [Google Scholar] [CrossRef]
- Chhetri, K.; Dahal, B.; Mukhiya, T.; Tiwari, A.P.; Muthurasu, A.; Kim, T.; Kim, H.; Kim, H.Y. Integrated hybrid of graphitic carbon-encapsulated CuxO on multilayered mesoporous carbon from copper MOFs and polyaniline for asymmetric supercapacitor and oxygen reduction reactions. Carbon 2021, 179, 89–99. [Google Scholar] [CrossRef]
- Diao, J.; Li, X.; Wang, S.; Zhao, Z.; Wang, W.; Chen, K.; Chen, X.; Chao, T.; Yang, Y. Promoting water splitting on arrayed molybdenum carbide nanosheets with electronic modulation. J. Mater. Chem. A 2021, 9, 21440–21447. [Google Scholar] [CrossRef]
- Hu, X.; Huang, L.; Zhang, J.; Li, H.; Zha, K.; Shi, L.; Zhang, D. Facile and template-free fabrication of mesoporous 3D nanosphere-like MnxCo3−xO4 as highly effective catalysts for low temperature SCR of NOx with NH3. J. Mater. Chem. A 2018, 6, 2952–2963. [Google Scholar] [CrossRef]
- Kandel, M.R.; Pan, U.N.; Paudel, D.R.; Dhakal, P.P.; Kim, N.H.; Lee, J.H. Hybridized bimetallic phosphides of Ni–Mo, Co–Mo, and Co–Ni in a single ultrathin-3D-nanosheets for efficient HER and OER in alkaline media. Compos. Part B 2022, 239, 109992. [Google Scholar] [CrossRef]
- Cheng, Z.; Fu, Q.; Han, Q.; Xiao, Y.; Liang, Y.; Zhao, Y.; Qu, L. A type of 1 nm molybdenum carbide confined within carbon nanomesh as highly efficient bifunctional electrocatalyst. Adv. Funct. Mater. 2018, 28, 1705967. [Google Scholar] [CrossRef]
- Pintado, S.; Goberna-Ferrón, S.; Escudero-Adán, E.C.; Galán-Mascarós, J.R. Fast and Persistent Electrocatalytic Water Oxidation by Co–Fe Prussian Blue Coordination Polymers. J. Am. Chem. Soc. 2013, 135, 13270–13273. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, G.; Li, G.; Sun, Y.; Asefa, T.; Chen, W.; Zou, X. Coupling Mo2C with nitrogen-rich nanocarbon leads to efficient hydrogen-evolution electrocatalytic sites. Angew Chem. Int. Ed 2015, 54, 10752–10757. [Google Scholar] [CrossRef] [PubMed]
- Hu, E.; Ning, J.; He, B.; Li, Z.; Zheng, C.; Zhong, Y.; Zhang, Z.; Hu, Y. Unusual formation of tetragonal microstructures from nitrogen-doped carbon nanocapsules with cobalt nanocores as a bi-functional oxygen electrocatalyst. J. Mater. Chem. A 2017, 5, 2271–2279. [Google Scholar] [CrossRef]
- Liu, W.; Hu, X.; Li, H.; Yu, H. Pseudocapacitive Ni-Co-Fe hydroxides/N-doped carbon nanoplates-based electrocatalyst for efficient oxygen evolution. Small 2018, 14, 1801878. [Google Scholar] [CrossRef]
- Fan, R.; Zhou, Y.; Li, M.; Xie, J.; Yu, W.; Chi, J.; Wang, L.; Yu, J.; Chai, Y.; Dong, B. In situ construction of Fe(Co)OOH through ultra-fast electrochemical activation as real catalytic species for enhanced water oxidation. Chem. Eng. J. 2021, 426, 131943. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.; Chung, D.; Yoo, J.; Lee, H.; Kim, M.; Mun, B.; Kwon, S.; Sung, Y.; Hyeon, T. Design principle of Fe-N-C electrocatalysts: How to optimize multimodal porous structures? J. Am. Chem. Soc. 2019, 141, 2035–2045. [Google Scholar] [CrossRef]
- Liang, B.; Yue, L.; Li, T.; Liu, Q.; Liu, Y.; Gao, S.; Alshehri, A.; Alzahrani, K.; Luo, Y.; Sun, X. CoFe-LDH nanowire arrays on graphite felt: A high-performance oxygen evolution electrocatalyst in alkaline media. Chin. Chem. Lett. 2022, 33, 890–892. [Google Scholar]
- Lu, F.; Fan, K.; Cui, L.; Li, B.; Yang, Y.; Zong, L.; Wang, L. Engineering FeN4 active sites onto nitrogen-rich carbon with tubular channels for enhanced oxygen reduction reaction performance. Appl. Catal. B 2022, 313, 121464. [Google Scholar] [CrossRef]
- Liu, L.; Zeng, G.; Chen, J.; Bi, L.; Dai, L.; Wen, Z. N-doped porous carbon nanosheets as pH-universal ORR electrocatalyst in various fuel cell devices. Nano Energy 2018, 49, 393–402. [Google Scholar] [CrossRef]
- Guo, M.; Xu, M.; Qu, Y.; Hu, C.; Yan, P.; Isimjan, T.; Yang, X. Electronic/mass transport increased hollow porous Cu3P/MoP nanospheres with strong electronic interaction for promoting oxygen reduction in Zn-air batteries. Appl. Catal. B 2021, 297, 120415. [Google Scholar] [CrossRef]
- Guo, Y.; Yuan, P.; Zhang, J.; Xia, H.; Cheng, F.; Zhou, M.; Li, J.; Qiao, Y.; Mu, S.; Xu, Q. Co2P-CoN double active centers confined in N-doped carbon nanotube: Heterostructural engineering for trifunctional catalysis toward HER, ORR, OER, and Zn-air batteries driven water splitting. Adv. Funct. Mater. 2018, 28, 1805641. [Google Scholar] [CrossRef]
- Jian, H.; Gu, J.; Zheng, X.; Liu, M.; Qiu, X.; Wang, L.; Li, W.; Chen, Z.; Ji, X.; Li, J. Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy Environ. Sci. 2019, 12, 322–333. [Google Scholar] [CrossRef]
- Zhong, H.; Li, K.; Zhang, Q.; Wang, J.; Meng, F.; Wu, Z.; Yan, J.; Zhang, X. In situ anchoring of Co9S8 nanoparticles on N and S Co-doped porous carbon tube as bifunctional oxygen electrocatalysts. NPG Asia Mater. 2016, 8, 308. [Google Scholar] [CrossRef]
- Sun, T.; Wang, J.; Qiu, C.; Ling, X.; Tian, B.; Chen, W.; Su, C.B. N codoped and defect-rich nanocarbon material as a metal-free bifunctional electrocatalyst for oxygen reduction and evolution reactions. Adv. Sci. 2018, 5, 1800036. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Deng, J.; Wang, G.; Hao, Y.; Bi, K.; Wang, X.; Yang, Y. N, P-doped CoS2 embedded in TiO2 nanoporous films for Zn-air batteries. Adv. Funct. Mater. 2018, 28, 1804540. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, C.; Chen, W. FeP embedded in N, P dual-doped porous carbon nanosheets: An efficient and durable bifunctional catalyst for oxygen reduction and evolution reactions. J. Mater. Chem. A 2016, 4, 18723–18729. [Google Scholar] [CrossRef]
- Anantharaj, S.; Karthik, P.; Kundu, S. Self-assembled IrO2 nanoparticles on a DNA scaffold with enhanced catalytic and oxygen evolution reaction (OER) activities. J. Mater. Chem. A 2015, 3, 24463–24478. [Google Scholar] [CrossRef]
- Lee, S.; Bai, L.; Hu, X. Deciphering iron-dependent activity in oxygen evolution catalyzed by nickel-iron layered double hydroxide. Angew Chem. Int. Ed. 2020, 59, 8072–8077. [Google Scholar] [CrossRef] [PubMed]
- Kuang, M.; Wang, Y.; Fang, W.; Tan, H.; Chen, M.; Yao, J.; Liu, C.; Xu, J.; Zhou, K.; Yan, Q. Efficient nitrate synthesis via ambient nitrogen oxidation with Ru-doped TiO2 /RuO2 electrocatalysts. Adv. Mater. 2020, 32, 2002189. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Chen, L.; Liu, Y.; Yuan, Z. Hollow cobalt phosphate microspheres for sustainable electrochemical ammonia production through rechargeable Zn–N2 batteries. J. Mater. Chem. A 2021, 9, 11370–11380. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, J.; Miao, Y.; Liu, B.; Shao, S.; Zhang, X.; Sun, Z.; Xu, X.; Yao, Y.; Hu, C.; Zou, J. CoFe Alloy-Coupled Mo2C Wrapped by Nitrogen-Doped Carbon as Highly Active Electrocatalysts for Oxygen Reduction/Evolution Reactions. Nanomaterials 2023, 13, 543. https://doi.org/10.3390/nano13030543
Xie J, Miao Y, Liu B, Shao S, Zhang X, Sun Z, Xu X, Yao Y, Hu C, Zou J. CoFe Alloy-Coupled Mo2C Wrapped by Nitrogen-Doped Carbon as Highly Active Electrocatalysts for Oxygen Reduction/Evolution Reactions. Nanomaterials. 2023; 13(3):543. https://doi.org/10.3390/nano13030543
Chicago/Turabian StyleXie, Jiahao, Yu Miao, Bin Liu, Siliang Shao, Xu Zhang, Zhiyao Sun, Xiaoqin Xu, Yuan Yao, Chaoyue Hu, and Jinlong Zou. 2023. "CoFe Alloy-Coupled Mo2C Wrapped by Nitrogen-Doped Carbon as Highly Active Electrocatalysts for Oxygen Reduction/Evolution Reactions" Nanomaterials 13, no. 3: 543. https://doi.org/10.3390/nano13030543
APA StyleXie, J., Miao, Y., Liu, B., Shao, S., Zhang, X., Sun, Z., Xu, X., Yao, Y., Hu, C., & Zou, J. (2023). CoFe Alloy-Coupled Mo2C Wrapped by Nitrogen-Doped Carbon as Highly Active Electrocatalysts for Oxygen Reduction/Evolution Reactions. Nanomaterials, 13(3), 543. https://doi.org/10.3390/nano13030543