Photocatalytic Activity of MoS2 Nanoflower-Modified CaTiO3 Composites for Degradation of RhB under Visible Light
Abstract
:1. Introduction
2. Experiment and Materials
2.1. Materials
2.2. Preparation of MoS2/CTO Composites
2.3. Characterization Methodologies
2.4. Photocatalytic Test Procedure
3. Results and Discussion
3.1. Characterization
3.2. Photocatalytic Application
3.3. Proposed Photocatalytic Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Pan, J.; Li, H.; Ou, W.; Li, S.; Zhao, W.; Wang, J.; Song, C.; Zheng, Y.; Li, C. The 2D petaloid MoS2 lamellas modified cubic CaTiO3 nanocomposites towards photocatalytic hydrogen production enhancement. J. Alloy. Compd. 2019, 811, 152067. [Google Scholar] [CrossRef]
- Biegalski, M.; Qiao, L.; Gu, Y.; Mehta, A.; He, Q.; Takamura, Y.; Borisevich, A.; Chen, L. Impact of symmetry on the ferroelectric properties of CaTiO3 thin films. Appl. Phys. Lett. 2015, 106, 162904. [Google Scholar] [CrossRef]
- Zhuang, J.; Tian, Q.; Lin, S.; Yang, W.; Chen, L.; Liu, P. Precursor morphology-controlled formation of perovskites CaTiO3 and their photo-activity for As (III) removal. Appl. Catal. B Environ. 2014, 156–157, 108–115. [Google Scholar] [CrossRef]
- Oliveira, L.; Moura, A.; Port, F.; Nogueir, I.; Aguiar, E.; Sequinel, T.; Rosa, I.; Longo, E.; Varela, J. Influence of Cu-doping on the structural and optical properties of CaTiO3 powders. Mater. Res. Bull. 2016, 81, 1–9. [Google Scholar] [CrossRef]
- Oliveira, L.; Ramírez, M.; Ponce, M.; Ramajo, L.; Albuquerque, A.; Sambrano, J.; Longo, E.; Castro, M.; La Porta, F. Optical and gas-sensing properties, and electronic structure of the mixed-phase CaCu3Ti4O12/CaTiO3 composites. Mater. Res. Bull. 2017, 93, 47–55. [Google Scholar] [CrossRef]
- Manjusha, P.; Bonamali, P. A review on CaTiO3 photocatalyst: Activity enhancement methods and photocatalytic applications. Powder Technol. 2021, 388, 274–304. [Google Scholar]
- Underwood, T.M.; Robinson, R.S. Adducing Knowledge Capabilities of Instrumental Techniques Through the Exploration of Heterostructures’ Modification Methods. Chemphyschem 2022, 23, e202200241. [Google Scholar] [CrossRef]
- Ariba, B.; Abdul, S.; Niaz Ahmad, N.; Sajjad, H. Muhammad Saeed Akhtar. Electrical transport properties and thermoelectric power studies of polyaniline–CaTiO3 composites. Polym. Bull. 2022. [Google Scholar] [CrossRef]
- Han, C.; Liu, J.; Yang, W.; Wu, Q.; Yang, H.; Xue, X. Enhancement of photocatalytic activity of CaTiO3 through HNO3 acidification. J. Photochem. Photobiol. A: Chem. 2016, 322–323, 1–9. [Google Scholar] [CrossRef]
- Xian, T.; Yang, H.; Huo, Y.; Ma, J.; Zhang, H.; Su, J.; Feng, W. Fabrication of Ag-decorated CaTiO3 nanoparticles and their enhanced photocatalytic activity for dye degradation. J. Nanosci. Nanotechnol. 2016, 16, 570–575. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Liu, J.; Yang, W.; Wu, Q.; Yang, H.; Xue, X. Photocatalytic activity of CaTiO3 synthesized by solid state, sol–gel and hydrothermal methods. J. Sol Gel Sci. Technol. 2017, 81, 806–813. [Google Scholar] [CrossRef]
- Singh, D.; Baitha, P.; Manam, J. Enhancement of luminescence intensity and spectroscopic analysis of Eu3+ activated and Li+ charge-compensated CaTiO3 color tunable phosphors for solid-state lighting. Appl. Phys. A 2016, 122, 668. [Google Scholar] [CrossRef]
- Alammara, T.; Hamma, I.; Warkb, M.; Mudring, A. Low-temperature route to metal titanate perovskite nanoparticles for photocatalytic applications. Appl. Catal. B: Environ. 2015, 178, 20–28. [Google Scholar] [CrossRef]
- Dong, W.; Bao, Q.; Gu, X.; Zhao, G. Controlled synthesis of flower-like CaTiO3 and effects of morphology on its photocatalytic activities. J. Ceram. Soc. Jpn. 2015, 123, 643–648. [Google Scholar] [CrossRef]
- Yang, X.; Mu, Y.; Bai, C.; Xu, W.; Hong, C.; Dai, K.; Cheng, S. A CsPbBr3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction. J. Am. Chem. Soc. 2017, 139, 5660–5663. [Google Scholar]
- Yi, Z.; Yi, L.; Kristen, M.; Han, Z.; Eilaf, E. Lead Halide Perovskite Nanocrystals as Photocatalysts for PET-RAFT Polymerization under Visible and Near-Infrared Irradiation. ACS Macro Lett. 2020, 9, 725–730. [Google Scholar]
- Yi, Z.; Yi, L.; Qing, A.; Guan, G.; Lin, Y.; Qi, F.; Xiao, T.; Xiang, Z.; Eilaf, E.; Pulickel, A.; et al. In Situ Synthesis of Lead-Free Halide Perovskite−COF Nanocomposites as Photocatalysts for Photoinduced Polymerization in Both Organic and Aqueous Phases. ACS Mater. Lett. 2022, 4, 464–471. [Google Scholar]
- Jiang, E.; Song, N.; Che, G.; Liu, C.; Dong, H.; Yang, L. Construction of a Z-scheme MoS2/CaTiO3 heterostructure by the morphology-controlled strategy towards enhancing photocatalytic activity. Chem. Eng. J. 2020, 399, 125721. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, S.; Liu, B. Degradation technologies and mechanisms of dioxins in municipal solid waste incineration fly ash: A review. J. Clean. Prod. 2020, 250, 119507. [Google Scholar] [CrossRef]
- Yan, Y.; Yang, H.; Zhao, X.; Zhang, H.; Jiang, J. A hydrothermal route to the synthesis of CaTiO3 nanocuboids using P25 as the titanium source. J. Electron. Mater. 2018, 47, 3045–3050. [Google Scholar] [CrossRef]
- Kumar, A.; Schuerings, C.; Kumar, S.; Kumar, A.; Krishnan, V. Perovskite-structured CaTiO3 coupled with g-C3N4 as a heterojunction photocatalyst for organic pollutant degradation. Beilstein J. Nanotechnol. 2018, 9, 671–685. [Google Scholar] [CrossRef] [PubMed]
- Ariane, S.; Aldo, J.; Zarbin. Molybdenum-based two-dimensional materials: Synthesis, dispersion, exfoliation and thin film deposition. J. Colloid Interface Sci. 2019, 554, 80–90. [Google Scholar]
- Liu, J.; Mu, X.; Yang, Y. Construct 3D Pd@MoS2-conjugated polypyrrolefram works heterojunction with unprecedented photocatalytic activity for Tsuji-Trostreaction under visible light. Appl. Catal. B Environ. 2019, 244, 355–366. [Google Scholar] [CrossRef]
- Shahid, W.; Idrees, F.; Iqbal, M.; Tariq, M.; Shahid, S.; Choi, J. Ex Situ Synthesis and Characterizations of MoS2/WO3 Heterostructures for Efficient Photocatalytic Degradation of RhB. Nanomaterials 2022, 12, 2974. [Google Scholar] [CrossRef]
- Jiang, Z.; Pan, J.; Wang, B.; Li, C. Two dimensional Z-scheme AgCl/Ag/CaTiO3 nano-heterojunctions for photocatalytic hydrogen production enhancement. Appl. Surf. Sci. 2018, 436, 519–526. [Google Scholar] [CrossRef]
- Xiang, Z.; Nan, J.; Deng, J.; Shi, Y.; Zhao, Y.; Zhang, B.; Xiang, X. Uniform CdS-decorated carbon microsheets with enhanced photocatalytic hydrogen evolution under visible-light irradiation. J. Alloy. Compd. 2019, 770, 886–895. [Google Scholar] [CrossRef]
- Min, C.; Qiang, X.; Zhu, L.; Qiu, K.; Xuan, X. Synthesis and photocatalytic activity of Na+ co-doped CaTiO3:Eu3+ photocatalysts for methylene blue degradation. Ceram. Int. 2020, 46, 12111–12119. [Google Scholar]
- Cao, D.; Wang, Q.; Zhu, S.; Zhang, X.; Li, Y.; Cui, Y.; Xue, Z.; Gao, S. Hydrothermal construction of flower-like MoS2 on TiO2 NTs for highly efficient environmental remediation and photocatalytic hydrogen evolution. Sep. Purif. Technol. 2021, 265, 118463. [Google Scholar] [CrossRef]
- Mei, W.; Chen, C.; Liu, X.; Yang, Z.; Ding, F.; Chao, Z.; Liu, T. Low-temperature construction of MoS2 quantum dots/ZnO spheres and their photocatalytic activity under natural sunlight. J. Colloid Interface Sci. 2018, 530, 714–724. [Google Scholar] [CrossRef]
- Senthil, R.; Osman, S.; Pan, J.; Sun, Y.; Kumar, T.; Manikandan, A. A facile hydrothermal synthesis of visible-light responsive BiFeWO6/MoS2 composite as superior photocatalyst for degradation of organic pollutants. Ceram. Int. 2019, 45, 18683–18690. [Google Scholar] [CrossRef]
- Deng, B.; Si, P.; Bauman, L.; Luo, J.; Rao, M.; Peng, Z.; Jiang, T.; Li, G.; Zhao, B. Photocatalytic activity of CaTiO3 derived from roasting process of bauxite residue. J. Clean. Prod. 2020, 244, 118598. [Google Scholar] [CrossRef]
- Yan, Y.; Yang, H.; Yi, Z.; Xian, T.; Wang, X. Direct Z-scheme CaTiO3@BiOBr composite photocatalysts with enhanced photodegradation of dyes. Environ. Sci. Pollut. Res. 2019, 26, 29020–29031. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Sun, Y.; Zhang, Z.; Xu, M.; Xin, B. Facile synthesis and photocatalytic activity of Ag3PO4 decorated MoS2 nanoflakes on carbon fiber cloth. Mater. Res. Bull. 2018, 100, 345–352. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, K.; Zhang, Y.; Xing, X.; Li, H. High Photocatalytic Activity of g-C3N4/La-N-TiO2 Composite with Nanoscale Heterojunctions for Degradation of Ciprofloxacin. Int. J. Environ. Res. Public Health 2022, 19, 4793. [Google Scholar] [CrossRef] [PubMed]
Condition | 200 °C, 24 h, 80 mL | |||
---|---|---|---|---|
Na2MoO4·2H2O | 0.10 | 0.20 | 0.40 | 0.80 |
C2H5NS | 0.18 | 0.36 | 0.72 | 1.44 |
Samples No. | MCTO-1 | MCTO-2 | MCTO-3 | MCTO-4 |
Samples | Blank | CTO | MCTO-1 | MCTO-2 | MCTO-3 | MCTO-4 |
---|---|---|---|---|---|---|
Degradation (%) | 7.87 | 18.75 | 31.72 | 96.88 | 78.07 | 66.01 |
K/min−1 | 0.0004 | 0.0011 | 0.0021 | 0.0189 | 0.0081 | 0.0056 |
R2 | 0.944 | 0.987 | 0.943 | 0.954 | 0.941 | 0.965 |
Photocatalysts | C0 (mg/L) | Catalyst Dosage (mg) | Light Wavelength (λ) | Light Power | Degradation (%) min−1 | Ref. |
---|---|---|---|---|---|---|
MoS2/TiO2 | 9.6 | Null | Simulated sunlight | 500 W | 76%/180 min | [28] |
MoS2/ZnO | 4.8 | 150 | Natural sunlight | 300 W | 100%/90 min | [29] |
BiFeWO6/MoS2 | 25 | 25 | Visible-light | 500 W | 100%/75 min | [30] |
MoS2/WO3 | 10 | 100 | Solar light | Null | 98%/90 min | [24] |
CaTiO3 | 3 | 100 | UV bulbs | 15 W | 98%/300 min | [31] |
CTO@BiOBr | 5 | 100 | Simulated sunlight | 200 W | 99%/30 min | [32] |
CC@MoS2-Ag3PO4 | 5 | 10 | Simulated daylight | 300 W | 96%/80 min | [33] |
MoS2/CaTiO3 | 1 | 25 | LED lamp | 15 W | 97%/180 min | Our work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, M.; Xu, J.; Xu, W.; Zheng, Y.; Wu, G.; Jeong, T. Photocatalytic Activity of MoS2 Nanoflower-Modified CaTiO3 Composites for Degradation of RhB under Visible Light. Nanomaterials 2023, 13, 636. https://doi.org/10.3390/nano13040636
Luo M, Xu J, Xu W, Zheng Y, Wu G, Jeong T. Photocatalytic Activity of MoS2 Nanoflower-Modified CaTiO3 Composites for Degradation of RhB under Visible Light. Nanomaterials. 2023; 13(4):636. https://doi.org/10.3390/nano13040636
Chicago/Turabian StyleLuo, Minghan, Jiaxing Xu, Wenjie Xu, Yu Zheng, Gongde Wu, and Taeseop Jeong. 2023. "Photocatalytic Activity of MoS2 Nanoflower-Modified CaTiO3 Composites for Degradation of RhB under Visible Light" Nanomaterials 13, no. 4: 636. https://doi.org/10.3390/nano13040636
APA StyleLuo, M., Xu, J., Xu, W., Zheng, Y., Wu, G., & Jeong, T. (2023). Photocatalytic Activity of MoS2 Nanoflower-Modified CaTiO3 Composites for Degradation of RhB under Visible Light. Nanomaterials, 13(4), 636. https://doi.org/10.3390/nano13040636