Preparation and Characterization of PVDF–TiO2 Mixed-Matrix Membrane with PVP and PEG as Pore-Forming Agents for BSA Rejection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
Membrane Fabrication
2.3. Membrane Characterizations
2.4. Experiment with Filtration (Permeation Flux and Rejection Measurement)
3. Result and Discussion
3.1. Membrane Characterizations
3.1.1. Morphological Studies of PVDF Mixed-Matrix Membranes
3.1.2. FTIR Spectroscopy of Membranes
3.1.3. Contact Angle
3.1.4. Membrane Porosity
3.1.5. Tensile Test
3.1.6. Viscosity
3.2. The Membrane Performance Analysis
3.2.1. Water Permeation Test
3.2.2. BSA Flux and Rejection Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kotsilkova, R.; Borovanska, I.; Todorov, P.; Ivanov, E.; Menseidov, D.; Chakraborty, S.; Bhattacharjee, C. Tensile and Surface Mechanical Properties of Polyethersulphone (PES) and Polyvinylidene Fluoride (PVDF) Membranes. J. Theor. Appl. Mech. 2018, 48, 85–99. [Google Scholar] [CrossRef] [Green Version]
- Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Mariñas, B.J.; Mayes, A.M. Science and Technology for Water Purification In The Coming Decades. Nature 2008, 452, 301–310. [Google Scholar] [CrossRef]
- Sharma, A.; Pathak, D.; Patil, D.S.; Dhiman, N.; Bhullar, V.; Mahajan, A. Electrospun PVP/TiO2 Nanofibers for Filtration and Possible Protection from Various Viruses like COVID-19. Technologies 2021, 9, 89. [Google Scholar] [CrossRef]
- Hebbar, R.S.; Isloor, A.M.; Ananda, K.; Ismail, A.F. Fabrication of Polydopamine Functionalized Halloysite Nano-tube/Polyetherimide Membranes For Heavy Metal Removal. J. Mater. Chem. A 2016, 4, 764–774. [Google Scholar] [CrossRef]
- Ma, X.-H.; Guo, H.; Yang, Z.; Yao, Z.-K.; Qing, W.-H.; Chen, Y.-L.; Xu, Z.-L.; Tang, C.Y. Carbon Nanotubes Enhance Permeability of Ultrathin Polyamide Rejection Layers. J. Membr. Sci. 2019, 570–571, 139–145. [Google Scholar] [CrossRef]
- Liao, Y.; Loh, C.-H.; Tian, M.; Wang, R.; Fane, A.G. Progress In Electrospun Polymeric Nanofibrous Membranes for Water Treatment: Fabrication, Modification and Applications. Prog. Polym. Sci. 2018, 77, 69–94. [Google Scholar] [CrossRef]
- Tao, J.; Song, X.; Bao, B.; Zhao, S.; Liu, H. The Role of Surface Wettability on Water Transport Through Membranes. Chem. Eng. Sci. 2020, 219, 115602. [Google Scholar] [CrossRef]
- Teow, Y.H.; Ooi, B.S.; Ahmad, A.L.; Lim, J.K. Investigation of Anti-Fouling and UV-Cleaning Properties of PVDF/TiO2 Mixed-Matrix Membrane For Humic Acid Removal. Membranes 2021, 11, 16. [Google Scholar] [CrossRef]
- Li, C.; Yang, J.; Zhang, L.; Li, S.; Yuan, Y.; Xiao, X.; Fan, X.; Song, C. Carbon-Based Membrane Materials and Applications In Water and Wastewater Treatment: A Review. Environ. Chem. Lett. 2021, 19, 1457–1475. [Google Scholar] [CrossRef]
- Li, H.; Shi, W.; Zeng, X.; Huang, S.; Zhang, H.; Qin, X. Improved Desalination Properties of Hydrophobic GO-Incorporated PVDF Electrospun Nanofibrous Composites For Vacuum Membrane Distillation. Sep. Purif. Technol. 2020, 230, 115889. [Google Scholar] [CrossRef]
- Remanan, S.; Ghosh, S.; Das, T.K.; Das, N.C. Nano to Microblend Formation in Poly(ethylene-co-methyl acrylate)/Poly(vinylidene fluoride) Blend and Investigation of Its Anomalies In Rheological Properties. Nano-Struct. Nano-Objects 2020, 23, 100487. [Google Scholar] [CrossRef]
- Zhang, Q.; Lu, X.; Zhao, L. Preparation of Polyvinylidene Fluoride (PVDF) Hollow Fiber Hemodialysis Membranes. Membranes 2014, 4, 81–95. [Google Scholar] [CrossRef]
- Du, C.; Wang, Z.; Liu, G.; Wang, W.; Yu, D. One-Step Electrospinning PVDF/PVP-TiO2 Hydrophilic Nanofiber Membrane with Strong Oil-Water Separation and Anti-Fouling Property. Colloids Surf. A Physicochem. Eng. Asp. 2021, 624, 126790. [Google Scholar] [CrossRef]
- Liu, C.; Wu, L.; Zhang, C.; Chen, W.; Luo, S. Surface Hydrophilic Modification of PVDF Membranes by Trace Amounts of Tannin and Polyethyleneimine. Appl. Surf. Sci. 2018, 457, 695–704. [Google Scholar] [CrossRef]
- Mahmoudi, E.; Ng, L.Y.; Ang, W.L.; Teow, Y.H.; Mohammad, A.W. Improving Membrane Bioreactor Performance Through The Synergistic Effect of Silver-Decorated Graphene Oxide In Composite Membranes. J. Water Process. Eng. 2020, 34, 101169. [Google Scholar] [CrossRef]
- Liu, F.; Hashim, N.A.; Liu, Y.; Moghareh Abed, M.R.; Li, K. Progress in The Production and Modification of PVDF Mem-Branes. J. Membr. Sci. 2011, 375, 1–27. [Google Scholar] [CrossRef]
- Geleta, T.A.; Maggay, I.V.; Chang, Y.; Venault, A. Recent Advances on the Fabrication of Antifouling Phase-Inversion Membranes by Physical Blending Modification Method. Membranes 2023, 13, 58. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zheng, M.; Zhou, Y.; Yang, L.; Zhang, Y.; Wu, Z.; Liu, G.; Zheng, J. Preparation of Nano-TiO2-Modified PVDF Membranes with Enhanced Antifouling Behaviors via Phase Inversion: Implications of Nanoparticle Dispersion Status in Casting Solutions. Membranes 2022, 12, 386. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Li, Y.; Han, L.; Xu, Z.; Zhou, Y.; Deng, B.; Xing, J. A Facile Strategy Toward the Preparation of a High-Performance Polyamide TFC Membrane with a CA/PVDF Support Layer. Nanomaterials 2022, 12, 4496. [Google Scholar] [CrossRef]
- Liu, Y.; Tu, Q.; Knothe, G.; Lu, M. Direct Transesterification of Spent Coffee Grounds For Biodiesel Production. Fuel 2017, 199, 157–161. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Zhang, X.; Zheng, X.; Wu, Z. Enhanced Antifouling Behaviours of Polyvinylidene Fluoride Membrane Modified Through Blending with Nano-TiO2/Polyethylene Glycol Mixture. Appl. Surf. Sci. 2015, 345, 418–427. [Google Scholar] [CrossRef]
- Yuliwati, E.; Ismail, A.F.; Othman, M.H.D.; Shirazi, M.M.A. Critical Flux and Fouling Analysis of PVDF-Mixed Matrix Membranes for Reclamation of Refinery-Produced Wastewater: Effect of Mixed Liquor Suspended Solids Concentration and Aeration. Membranes 2022, 12, 161. [Google Scholar] [CrossRef]
- Pereira, E.L.M.; Batista, A.D.S.M.; Alves, N.; De Oliveira, A.H.; Ribeiro, F.A.; Santos, A.P.; De Faria, L.O. Effects of The Addi-Tion of MWCNT and ZrO2 Nanoparticles On The Dosimetric Properties of PVDF. Appl. Radiat. Isot. 2018, 141, 275–281. [Google Scholar] [CrossRef]
- Park, J.-Y.; Lee, I.-H. Relative Humidity Effect on The Preparation of Porous Electrospun Polystyrene Fibers. J. Nanosci. Nano-technol. 2010, 10, 3473–3477. [Google Scholar] [CrossRef] [PubMed]
- Remanan, S.; Padmavathy, N.; Rabiya, R.; Ghosh, S.; Das, T.K.; Bose, S.; Sen, R.; Das, N.C. Converting Polymer Trash Into Treasure: An Approach To Prepare MoS2 Nanosheets Decorated PVDF Sponge For Oil/Water Separation And Antibacterial Applications. Ind. Eng. Chem. Res. 2020, 59, 20141–20154. [Google Scholar] [CrossRef]
- Lee, K.H.; Chu, J.Y.; Kim, A.R.; Kim, H.G.; Yoo, D.J. Functionalized TiO2 Mediated Organic-Inorganic Composite Membranes Based On Quaternized Poly(Arylene Ether Ketone) with Enhanced Ionic Conductivity and Alkaline Stability For Alkaline Fuel Cells. J. Membr. Sci. 2021, 634, 119435. [Google Scholar] [CrossRef]
- Park, J.-Y.; Hwang, K.-J.; Lee, J.-W.; Lee, I.-H. Fabrication and Characterization of Electrospun Ag Doped TiO2 Nanofibers For Photocatalytic Reaction. J. Mater. Sci. 2011, 46, 7240–7246. [Google Scholar] [CrossRef]
- Tran, D.-T.; Méricq, J.-P.; Mendret, J.; Brosillon, S.; Faur, C. Faur. Influence of Preparation Temperature on The Properties and Performance of Composite PVDF-TiO2 Membranes. Membranes 2021, 11, 876. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, K.; Arthanareeswaran, G.; Bose, A.C.; Kumar, P.S. Hydrophilic Hierarchical Carbon with TiO2 Nanofiber Mem-Brane For High Separation Efficiency of Dye and Oil-Water Emulsion. Sep. Purif. Technol. 2019, 241, 116709. [Google Scholar] [CrossRef]
- Enayatzadeh, M.; Mohammadi, T.; Fallah, N. Influence of TiO2 Nanoparticles Loading on Permeability and Antifouling Properties of Nanocomposite Polymeric Membranes: Experimental and Statistical Analysis. J. Polym. Res. 2019, 26, 240. [Google Scholar] [CrossRef]
- Feng, Y.; Han, G.; Chung, T.-S.; Weber, M.; Widjojo, N.; Maletzko, C. Effects of Polyethylene Glycol On Membrane Formation and Properties of Hydrophilic Sulfonated Polyphenylenesulfone (sPPSU) Membranes. J. Membr. Sci. 2017, 531, 27–35. [Google Scholar] [CrossRef]
- Abdullah, A.; Peechmani, P.; Hafiz, M.; Othman, D.; Hafiz, M. Removal of Organic Dye in Wastewater Using Polyethersul-fone Hollow Fiber Membrane. Appl. Membr. Sci. Technol. 2022, 26, 29–42. [Google Scholar] [CrossRef]
- Lu, K.-J.; Zuo, J.; Chung, T.-S. Novel PVDF Membranes Comprising N-Butylamine Functionalized Graphene Oxide For Direct Contact Membrane Distillation. J. Membr. Sci. 2017, 539, 34–42. [Google Scholar] [CrossRef]
- Shi, F.; Ma, Y.; Ma, J.; Wang, P.; Sun, W. Preparation and Characterization of PVDF/TiO2 Hybrid Membranes with Different Dosage of Nano-TiO2. J. Membr. Sci. 2012, 389, 522–531. [Google Scholar] [CrossRef]
- Yuliwati, E.; Ismail, A.; Matsuura, T.; Kassim, M.; Abdullah, M. Effect of Modified Pvdf Hollow Fiber Submerged Ultrafil-tration Membrane For Refinery Wastewater Treatment. Desalination 2011, 283, 214–220. [Google Scholar] [CrossRef]
- Abdullah, N.; Yusof, N.; Lau, W.; Jaafar, J.; Ismail, A. Recent Trends of Heavy Metal Removal From Water/Wastewater By Membrane Technologies. J. Ind. Eng. Chem. 2019, 76, 17–38. [Google Scholar] [CrossRef]
- Ong, C.; Lau, W.; Goh, P.; Ng, B.; Ismail, A. Preparation And Characterization of PVDF–PVP–TiO2 Composite Hollow Fiber Membranes For Oily Wastewater Treatment Using Submerged Membrane System. Desalin. Water Treat. 2013, 53, 1213–1223. [Google Scholar] [CrossRef]
- Farahani, M.H.D.A.; Vatanpour, V. A Comprehensive Study On The Performance and Antifouling Enhancement of The PVDF Mixed Matrix Membranes By Embedding Different Nanoparticulates: Clay, Functionalized Carbon Nanotube, SiO2 and TiO2. Sep. Purif. Technol. 2018, 197, 372–381. [Google Scholar] [CrossRef]
- Mackay, M.E.; Tuteja, A.; Duxbury, P.M.; Hawker, C.J.; Van Horn, B.; Guan, Z.; Chen, G.; Krishnan, R.S. General Strategies For Nanoparticle Dispersion. Science 2006, 311, 1740–1743. [Google Scholar] [CrossRef]
- Güneş-Durak, S.; Ormancı-Acar, T.; Tüfekci, N. Effect of PVP Content And Polymer Concentration On Polyetherimide (PEI) And Polyacrylonitrile (PAN) Based Ultrafiltration Membrane Fabrication And Characterization. Water Sci. Technol. 2018, 2017, 329–339. [Google Scholar] [CrossRef]
- Zhao, X.; Su, Y.; Cao, J.; Li, Y.; Zhang, R.; Liu, Y.; Jiang, Z. Fabrication of Antifouling Polymer-Inorganic Hybrid Membranes Through The Synergy of Biomimetic Mineralization And Nonsolvent Induced Phase Separation. J. Mater. Chem. A 2015, 3, 7287–7295. [Google Scholar] [CrossRef]
- Liu, Q.; Huang, S.; Zhang, Y.; Zhao, S. Comparing The Antifouling Effects of Activated Carbon and TiO2 In Ultrafiltration Membrane Development. J. Colloid Interface Sci. 2018, 515, 109–118. [Google Scholar] [CrossRef]
- Wu, T.; Zhou, B.; Zhu, T.; Shi, J.; Xu, Z.; Hu, C.; Wang, J. Facile and Low-Cost Approach Towards A PVDF Ultrafiltration Membrane with Enhanced Hydrophilicity And Antifouling Performance Via Graphene Oxide/Water-Bath Coagulation. RSC Adv. 2014, 5, 7880–7889. [Google Scholar] [CrossRef]
- Rajendran, S.; Mahendran, O.; Kannan, R. Lithium Ion Conduction In Plasticized PMMA-PVdF Polymer Blend Electrolytes. Mater. Chem. Phys. 2002, 74, 52–57. [Google Scholar] [CrossRef]
- Neidhöfer, M.; Beaume, F.; Ibos, L.; Bernès, A.; Lacabanne, C. Lacabanne. Structural evolution of PVDF during storage or annealing. Polymer 2004, 45, 1679–1688. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Wang, Q.; Pan, C.; Wu, Z. Comparison of Antifouling Behaviours of Modified PVDF Membranes By TiO2 Sols with Different Nanoparticle Size: Implications of Casting Solution Stability. J. Membr. Sci. 2016, 525, 378–386. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Q.; Wang, Z.; Zhu, C.; Wu, Z. Modification of Poly(Vinylidene Fluoride)/Polyethersulfone Blend Mem-brane with Polyvinyl Alcohol For Improving Antifouling Ability. J. Membr. Sci. 2014, 466, 293–301. [Google Scholar] [CrossRef]
- Fadaei, A.; Salimi, A.; Mirzataheri, M. Structural Elucidation of Morphology And Performance of The PVDF/PEG Membrane. J. Polym. Res. 2014, 21, 21. [Google Scholar] [CrossRef]
- Beygmohammdi, F.; Kazerouni, H.N.; Jafarzadeh, Y.; Hazrati, H.; Yegani, R. Preparation and Characterization of PVDF/PVP-GO Membranes To Be Used In MBR System. Chem. Eng. Res. Des. 2020, 154, 232–240. [Google Scholar] [CrossRef]
- Chan, M.; Ng, S. Effect of Membrane Properties on Contact Angle. AIP Conf. Proc. 2018, 2016, 020035. [Google Scholar] [CrossRef]
- Rana, D.; Matsuura, T. Surface Modifications for Antifouling Membranes. Chem. Rev. 2010, 110, 2448–2471. [Google Scholar] [CrossRef]
- Teow, Y.H.; Ahmad, A.L.; Lim, J.K.; Ooi, B.S. Preparation and characterization of PVDF/TiO2 Mixed Matrix Membrane Via In Situ Colloidal Precipitation Method. Desalination 2012, 295, 61–69. [Google Scholar] [CrossRef]
- Lin, S.; Li, Y.; Zhang, L.; Chen, S.; Hou, L. Zwitterion-like, Charge-Balanced Ultrathin Layers on Polymeric Membranes for Antifouling Property. Environ. Sci. Technol. 2018, 52, 4457–4463. [Google Scholar] [CrossRef]
- Tavakolmoghadam, M.; Mokhtare, A.; Rekabdar, F.; Esmaeili, M.; Khaneghah, A.H.K. A Predictive Model For Tuning Addi-tives For The Fabrication Of Porous Polymeric Membranes. Mater. Res. Express 2019, 7, 015312. [Google Scholar] [CrossRef]
- Ghaemi, N.; Madaeni, S.S.; Alizadeh, A.; Daraei, P.; Vatanpour, V.; Falsafi, M. Fabrication of Cellulose Acetate/Sodium Do-Decyl Sulfate Nanofiltration Membrane: Characterization And Performance In Rejection of Pesticides. Desalination 2012, 290, 99–106. [Google Scholar] [CrossRef]
- Hong, J.; He, Y. Effects of Nano Sized Zinc Oxide on The Performance of PVDF Microfiltration Membranes. Desalination 2012, 302, 71–79. [Google Scholar] [CrossRef]
- Francis, L.; Ghaffour, N.; Alsaadi, A.S.; Nunes, S.P.; Amy, G.L. PVDF Hollow Fiber and Nanofiber Membranes For Fresh Water Reclamation Using Membrane Distillation. J. Mater. Sci. 2013, 49, 2045–2053. [Google Scholar] [CrossRef] [Green Version]
- Gzara, L.; Rehan, Z.A.; Khan, S.B.; Alamry, K.A.; Albeirutty, M.H.; El-Shahawi, M.; Rashid, M.I.; Figoli, A.; Drioli, E.; Asiri, A. Preparation and Characterization of PES-Cobalt Nanocomposite Membranes with Enhanced Anti-Fouling Properties and Performances. J. Taiwan Inst. Chem. Eng. 2016, 65, 405–419. [Google Scholar] [CrossRef]
- Buonomenna, M.; Macchi, P.; Davoli, M.; Drioli, E. Poly(vinylidene fluoride) Membranes By Phase Inversion: The Role The Casting and Coagulation Conditions Play In Their Morphology, Crystalline Structure and Properties. Eur. Polym. J. 2007, 43, 1557–1572. [Google Scholar] [CrossRef]
- Ihsanullah. Carbon Nanotube Membranes For Water Purification: Developments, Challenges, and Prospects For The Fu-ture. Sep. Purif. Technol. 2019, 209, 307–337. [Google Scholar] [CrossRef]
- Deng, W.; Fan, T.; Li, Y. In Situ Biomineralization-Constructed Superhydrophilic and Underwater Superoleophobic PVDF-TiO2 Membranes For Superior Antifouling Separation of Oil-In-Water Emulsions. J. Membr. Sci. 2021, 622, 119030. [Google Scholar] [CrossRef]
- Stefan, M.; Pana, O.; Leostean, C.; Bele, C.; Silipas, D.; Senila, M.; Gautron, E. Synthesis and Characterization of Fe3O4-TiO2core-shell nanoparticles. J. Appl. Phys. 2014, 116, 114312. [Google Scholar] [CrossRef]
- Genceli, E.A.; Sengur-Tasdemir, R.; Urper, G.M.; Gumrukcu, S.; Guler-Gokce, Z.; Dagli, U.; Turken, T.; Sarac, A.S.; Koyuncu, I. Effects of Carboxylated Multi-Walled Carbon Nanotubes Having Different Outer Diameters On Hollow Fiber Ultrafiltration Membrane Fabrication and Characterization By Electrochemical Impedance Spectroscopy. Polym. Bull. 2018, 75, 2431–2457. [Google Scholar] [CrossRef]
- Abba, M.U.; Man, H.C.; Azis, R.A.S.; Isma Idris, A.; Hazwan Hamzah, M.; Yunos, K.F.; Katibi, K.K. Novel PVDF-PVP Hollow Fiber Membrane Augmented with TiO2 Nanoparticles: Preparation, Characterization and Application For Copper Removal From Leachate. Nanomaterials 2021, 11, 399. [Google Scholar] [CrossRef] [PubMed]
- Mahdavi, H.; Mazinani, N.; Heidari, A.A. Poly(vinylidene fluoride) (PVDF)/PVDF-g-polyvinylpyrrolidone (PVP)/TiO2 Mixed Matrix Nanofiltration Membranes: Preparation and Characterization. Polym. Int. 2020, 69, 1187–1195. [Google Scholar] [CrossRef]
- Katsoufidou, K.; Yiantsios, S.; Karabelas, A. Experimental Study of Ultrafiltration Membrane Fouling By Sodium Alginate And Flux Recovery By Backwashing. J. Membr. Sci. 2007, 300, 137–146. [Google Scholar] [CrossRef]
- Rabiee, H.; Shahabadi, S.M.S.; Mokhtare, A.; Rabiei, H.; Alvandifar, N. Enhancement in Permeation and Antifouling Proper-ties of PVC Ultrafiltration Membranes with Addition of Hydrophilic Surfactant Additives: Tween-20 and Tween-80. J. Environ. Chem. Eng. 2016, 4, 4050–4061. [Google Scholar] [CrossRef]
- Xu, F.; Wei, M.; Zhang, X.; Song, Y.; Zhou, W.; Wang, Y. How Pore Hydrophilicity Influences Water Permeability? Research 2019, 2019, 2581241. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Cui, Z.; Zhang, Y.; Qin, S.; Yan, F.; Li, J. Fabrication of Polysulfone Membrane Via Thermally Induced Phase Separa-tion Process. Mater. Lett. 2017, 195, 190–193. [Google Scholar] [CrossRef]
Membrane | PVDF (%.wt) | TiO2 (%.wt) | PVP (%.wt) | PEG (%.wt) | DMAc (%.wt) |
---|---|---|---|---|---|
Pristine PVDF | 16 | 0 | 0 | 0 | 84.000 |
PVDF–TiO2 | 16 | 0.975 | 0 | 0 | 83.025 |
PVDF–PEG | 16 | 0 | 0 | 2 | 82.000 |
PVDF–PEG–TiO2 | 16 | 0.975 | 0 | 2 | 81.025 |
PVDF–PVP | 16 | 0 | 2 | 0 | 82.000 |
PVDF–PVP–TiO2 | 16 | 0.975 | 2 | 0 | 81.025 |
Membrane | Pore Size (nm) |
---|---|
Pristine PVDF | 91.3 |
PVDF–TiO2 | 142 |
PVDF–PEG | 111 |
PVDF–PEG–TiO2 | 98.0 |
PVDF–PVP | 118 |
PVDF–PVP–TiO2 | 148 |
Membrane | Porosity (%) |
---|---|
Pristine PVDF | 46.493 |
PVDF–TiO2 | 68.263 |
PVDF–PEG | 78.055 |
PVDF–PEG–TiO2 | 80.389 |
PVDF–PVP | 88.282 |
PVDF–PVP–TiO2 | 85.218 |
Membrane | Tensile Strength (Kpa) | Elongation at Break (%) | Elastic Modulus (Mpa) |
---|---|---|---|
Pristine PVDF | 2.07 | 32.31 | 32.37 |
PVDF–TiO2 | 1.15 | 13.39 | 18.46 |
PVDF–PEG | 3.65 | 11.25 | 8.60 |
PVDF–PEG–TiO2 | 4.06 | 30.84 | 28.95 |
PVDF–PVP | 1.55 | 4.83 | 16.43 |
PVDF–PVP–TiO2 | 0.97 | 19.99 | 4.47 |
Membrane | Viscosity (MPa.s) |
---|---|
Pristine PVDF | 1577.5 |
PVDF–TiO2 | 1789.4 |
PVDF–PEG | 2007.6 |
PVDF–PEG–TiO2 | 1719.8 |
PVDF–PVP | 2917.0 |
PVDF–PVP–TiO2 | 1992.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gayatri, R.; Fizal, A.N.S.; Yuliwati, E.; Hossain, M.S.; Jaafar, J.; Zulkifli, M.; Taweepreda, W.; Ahmad Yahaya, A.N. Preparation and Characterization of PVDF–TiO2 Mixed-Matrix Membrane with PVP and PEG as Pore-Forming Agents for BSA Rejection. Nanomaterials 2023, 13, 1023. https://doi.org/10.3390/nano13061023
Gayatri R, Fizal ANS, Yuliwati E, Hossain MS, Jaafar J, Zulkifli M, Taweepreda W, Ahmad Yahaya AN. Preparation and Characterization of PVDF–TiO2 Mixed-Matrix Membrane with PVP and PEG as Pore-Forming Agents for BSA Rejection. Nanomaterials. 2023; 13(6):1023. https://doi.org/10.3390/nano13061023
Chicago/Turabian StyleGayatri, Rianyza, Ahmad Noor Syimir Fizal, Erna Yuliwati, Md Sohrab Hossain, Juhana Jaafar, Muzafar Zulkifli, Wirach Taweepreda, and Ahmad Naim Ahmad Yahaya. 2023. "Preparation and Characterization of PVDF–TiO2 Mixed-Matrix Membrane with PVP and PEG as Pore-Forming Agents for BSA Rejection" Nanomaterials 13, no. 6: 1023. https://doi.org/10.3390/nano13061023
APA StyleGayatri, R., Fizal, A. N. S., Yuliwati, E., Hossain, M. S., Jaafar, J., Zulkifli, M., Taweepreda, W., & Ahmad Yahaya, A. N. (2023). Preparation and Characterization of PVDF–TiO2 Mixed-Matrix Membrane with PVP and PEG as Pore-Forming Agents for BSA Rejection. Nanomaterials, 13(6), 1023. https://doi.org/10.3390/nano13061023