Dandelion-Like CuCo2O4@ NiMn LDH Core/Shell Nanoflowers for Excellent Battery-Type Supercapacitor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Samples
2.2. Characterization
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guan, X.; Huang, M.; Yang, L.; Wang, G.; Guan, X. Facial Design and Synthesis of CoSx/Ni-Co LDH Nanocages with Rhombic Dodecahedral Structure for High-Performance Asymmetric Supercapacitors. Chem. Eng. J. 2019, 372, 151–162. [Google Scholar] [CrossRef]
- Mao, Y.; Xie, J.; Liu, H.; Hu, W. Hierarchical Core/Shell Ag@Ni(OH)2@PPy Nanowire Electrode for Ultrahigh Energy Density Asymmetric Supercapacitor. Chem. Eng. J. 2021, 405, 126984. [Google Scholar] [CrossRef]
- Kumar, J.; Jung, H.J.; Neiber, R.R.; Soomro, R.A.; Kwon, Y.J.; Hassan, N.U.; Shon, M.; Lee, J.H.; Baek, K.; Cho, K.Y. Recent Advances in Oxygen Deficient Metal Oxides: Opportunities as Supercapacitor Electrodes. Int. J. Energy Res. 2022, 46, 7055–7081. [Google Scholar] [CrossRef]
- Gonçalves, J.M.; Silva, M.N.T.; Naik, K.K.; Martins, P.R.; Rocha, D.P.; Nossol, E.; Munoz, R.A.A.; Angnes, L.; Rout, C.S. Multifunctional Spinel MnCo2O4 Based Materials for Energy Storage and Conversion: A Review on Emerging Trends, Recent Developments and Future Perspectives. J. Mater. Chem. A 2021, 9, 3095–3124. [Google Scholar] [CrossRef]
- Chen, H.; Du, X.; Liu, X.; Wu, R.; Li, Y.; Xu, C. Facile Growth of Nickel Foam-Supported MnCo2O4 Porous Nanowires as Binder-Free Electrodes for High-Performance Hybrid Supercapacitors. J. Energy Storage 2022, 50, 104297. [Google Scholar] [CrossRef]
- Redekar, R.S.; Avatare, A.T.; Chouhan, J.L.; Patil, K.V.; Pawar, O.Y.; Patil, S.L.; Bhoite, A.A.; Patil, V.L.; Patil, P.S.; Tarwal, N.L. Review on Recent Advancements in Chemically Synthesized Manganese Cobalt Oxide (MnCo2O4) and Its Composites for Energy Storage Application. Chem. Eng. J. 2022, 450, 137425. [Google Scholar] [CrossRef]
- Tang, P.; Gao, P.; Cui, X.; Chen, Z.; Fu, Q.; Wang, Z.; Mo, Y.; Liu, H.; Xu, C.; Liu, J.; et al. Covalency Competition Induced Active Octahedral Sites in Spinel Cobaltites for Enhanced Pseudocapacitive Charge Storage. Adv. Energy Mater. 2022, 12, 2102053. [Google Scholar] [CrossRef]
- Zhang, J.; Yuan, X.; Si, M.; Jiang, L.; Yu, H. Core/Shell Structured Cadmium Sulfide Nanocomposites for Solar Energy Utilization. Adv. Colloid Interface Sci. 2020, 282, 102209. [Google Scholar] [CrossRef]
- Liu, S.; Li, A.; Yang, C.; Ouyang, F.; Zhou, J.; Liu, X. MnO2/Mn2O3 with Self-Triggered Oxygen-Defects for Superior Pseudocapacitive Energy Storage. Appl. Surf. Sci. 2022, 571, 151306. [Google Scholar] [CrossRef]
- Xiong, S.; Lin, M.; Wang, L.; Liu, S.; Weng, S.; Jiang, S.; Xu, Y.; Jiao, Y.; Chen, J. Defects-Type Three-Dimensional Co3O4 Nanomaterials for Energy Conversion and Low Temperature Energy Storage. Appl. Surf. Sci. 2021, 546, 149064. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, L.; Zhao, S.; Wu, L. Preparation of MnCo2O4@Ni(OH)2 Core-Shell Flowers for Asymmetric Supercapacitor Materials with Ultrahigh Specific Capacitance. Adv. Funct. Mater. 2016, 26, 4085–4093. [Google Scholar] [CrossRef]
- Li, X.; Wu, H.; Guan, C.; Elshahawy, A.M.; Dong, Y.; Pennycook, S.J.; Wang, J. (Ni,Co)Se2/NiCo-LDH Core/Shell Structural Electrode with the Cactus-Like (Ni,Co)Se2 Core for Asymmetric Supercapacitors. Small 2018, 15, 1803895. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Zhao, B.; Bai, J.; Ma, H.; Fang, Z.; Zhu, X.; Sun, Y. A High-Energy-Density Hybrid Supercapacitor with P-Ni(OH)2@Co(OH)2 Core–Shell Heterostructure and Fe2O3 Nanoneedle Arrays as Advanced Integrated Electrodes. Small 2020, 16, 2001974. [Google Scholar] [CrossRef]
- Sari, F.N.I.; Lin, K.-C.; Ting, J.-M. Mn(OH)2-Containing Co(OH)2/Ni(OH)2 Core-Shelled Structure for Ultrahigh Energy Density Asymmetric Supercapacitor. Appl. Surf. Sci. 2022, 576, 151805. [Google Scholar] [CrossRef]
- Man, P.; Zhang, Q.; Zhou, Z.; Chen, M.; Yang, J.; Wang, Z.; Wang, Z.; He, B.; Li, Q.; Gong, W.; et al. Engineering MoS2 Nanosheets on Spindle-Like A-Fe2O3 as High-Performance Core–Shell Pseudocapacitive Anodes for Fiber-Shaped Aqueous Lithium-Ion Capacitors. Adv. Funct. Mater. 2020, 30, 2003967. [Google Scholar] [CrossRef]
- Naveenkumar, P.; Maniyazagan, M.; Yesuraj, J.; Yang, H.-W.; Kang, N.; Kim, K.; Kalaignan, G.P.; Kang, W.S.; Kim, S.-J. Electrodeposited MnS@Ni(OH)2 Core-Shell Hybrids as an Efficient Electrode Materials for Symmetric Supercapacitor Applications. Electrochim. Acta 2022, 412, 140138. [Google Scholar] [CrossRef]
- Wang, G.; Yan, Z.; Ding, Y.; Xu, Z.; Li, Z. Hierarchical Core-Shell Nickel Hydroxide@nitrogen-Doped Hollow Carbon Spheres Composite for High-Performance Hybrid Supercapacitor. J. Colloid Interface Sci. 2022, 628, 286–296. [Google Scholar] [CrossRef]
- Zong, Q.; Yang, H.; Wang, Q.; Zhang, Q.; Zhu, Y.; Wang, H.; Shen, Q. Three-Dimensional Coral-like NiCoP@C@Ni(OH)2 Core-Shell Nanoarrays as Battery-Type Electrodes to Enhance Cycle Stability and Energy Density for Hybrid Supercapacitors. Chem. Eng. J. 2019, 361, 1–11. [Google Scholar] [CrossRef]
- Ameri, B.; Zardkhoshoui, A.M.; Hosseiny Davarani, S.S. Engineering of Hierarchical NiCoSe2@NiMn-LDH Core-Shell Nanostructures as a High-Performance Positive Electrode Material for Hybrid Supercapacitors. Sustain. Energy Fuels 2020, 4, 5144–5155. [Google Scholar] [CrossRef]
- Liang, H.; Lin, J.; Jia, H.; Chen, S.; Qi, J.; Cao, J.; Lin, T.; Fei, W.; Feng, J. Hierarchical NiCo-LDH/NiCoP@NiMn-LDH Hybrid Electrodes on Carbon Cloth for Excellent Supercapacitors. J. Mater. Chem. A 2018, 6, 15040–15046. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, Y.; Zhang, Y.; Si, H.; Qin, W.; Zhang, Y. Reduced Graphene Oxide Nanosheet Modified NiMn-LDH Nanoflake Arrays for High-Performance Supercapacitors. Chem. Commun. 2018, 54, 10172–10175. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Huang, C.; Yang, Z.; Su, J.; Zhang, W. Ultrathin NiMn-LDH Nanosheet Structured Electrocatalyst for Enhanced Electrocatalytic Urea Oxidation. Appl. Catal. A Gen. 2021, 614, 118049. [Google Scholar] [CrossRef]
- Kamari Kaverlavani, S.; Moosavifard, S.E.; Bakouei, A. Self-Templated Synthesis of Uniform Nanoporous CuCo2O4 Double-Shelled Hollow Microspheres for High-Performance Asymmetric Supercapacitors. Chem. Commun. 2017, 53, 1052–1055. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.; Zhao, X.; Du, K.; Huang, Y.; An, C.; Qiu, S.; Liu, M.; Yao, S.; Wu, Y. Flexible Asymmetric Supercapacitors Made of 3D Porous Hierarchical CuCo2O4@CQDs and Fe2O3@CQDs with Enhanced Performance. Electrochim. Acta 2018, 283, 248–259. [Google Scholar] [CrossRef]
- Lu, X.-F.; Wu, D.-J.; Li, R.-Z.; Li, Q.; Ye, S.-H.; Tong, Y.-X.; Li, G.-R. Hierarchical NiCo2O4 Nanosheets@hollow Microrod Arrays for High-Performance Asymmetric Supercapacitors. J. Mater. Chem. A 2014, 2, 4706–4713. [Google Scholar] [CrossRef]
- Wang, J.-G.; Jin, D.; Zhou, R.; Shen, C.; Xie, K.; Wei, B. One-Step Synthesis of NiCo2S4 Ultrathin Nanosheets on Conductive Substrates as Advanced Electrodes for High-Efficient Energy Storage. J. Power Source 2016, 306, 100–106. [Google Scholar] [CrossRef]
- Felhi, H.; Smari, M.; Bajorek, A.; Nouri, K.; Dhahri, E.; Bessais, L. Controllable Synthesis, XPS Investigation and Magnetic Property of Multiferroic BiMn2O5 System: The Role of Neodyme Doping. Prog. Nat. Sci. Mater. Int. 2019, 29, 198–209. [Google Scholar] [CrossRef]
- Ding, R.; Gao, H.; Zhang, M.; Zhang, J.; Zhang, X. Controllable Synthesis of Ni3−xCoxS4 Nanotube Arrays with Different Aspect Ratios Grown on Carbon Cloth for High-Capacity Supercapacitors. RSC Adv. 2015, 5, 48631–48637. [Google Scholar] [CrossRef]
- Poudel, M.B.; Kim, A.R.; Ramakrishan, S.; Logeshwaran, N.; Ramasamy, S.K.; Kim, H.J.; Yoo, D.J. Integrating the Essence of Metal Organic Framework-Derived ZnCoTe–N–C/MoS2 Cathode and ZnCo-NPS-N-CNT as Anode for High-Energy Density Hybrid Supercapacitors. Compos. Part B Eng. 2022, 247, 110339. [Google Scholar] [CrossRef]
- Bab u Poudel, M.; Chandra Lohani, P.; Kim, A.A. Synthesis of Silver Nanoparticles Decorated Tungsten Oxide Nanorods as High-Performance Supercapacitor Electrode. Chem. Phys. Lett. 2022, 804, 139884. [Google Scholar] [CrossRef]
- Poudel, M.B.; Kim, H.J. Confinement of Zn-Mg-Al-Layered Double Hydroxide and α-Fe2O3 Nanorods on Hollow Porous Carbon Nanofibers: A Free-Standing Electrode for Solid-State Symmetric Supercapacitors. Chem. Eng. J. 2022, 429, 132345. [Google Scholar] [CrossRef]
- Wu, N.; Zhao, W.; Zhou, B.; Wu, Y.; Hou, W.; Du, J.; Zhong, W. 3D nitrogen-doped Ti3C2Tx/rGO foam with marco-and microporous structures for enhance supercapacitive performance. Electrochim. Acta 2022, 404, 139752. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, Q.; Long, Y.; Wang, F.; Wu, L.; Pan, J.; Han, J.; Lei, Y.; Shi, W.; Song, S. In Situ Formation of Co9S8 Quantum Dots in MOF-Derived Ternary Metal Layered Double Hydroxide Nanoarrays for High-Performance Hybrid Supercapacitors. Adv. Energy Mater. 2020, 10, 1903193. [Google Scholar] [CrossRef]
- Zhou, C.; Gao, T.; Wang, Y.; Liu, Q.; Huang, Z.; Liu, X.; Qing, M.; Xiao, D. Synthesis of P-Doped and NiCo-Hybridized Graphene-Based Fibers for Flexible Asymmetrical Solid-State Micro-Energy Storage Device. Small 2019, 15, 1803469. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, W.; Xu, X.; Wu, N.; Zhao, X.; Gong, J. Dandelion-Like CuCo2O4@ NiMn LDH Core/Shell Nanoflowers for Excellent Battery-Type Supercapacitor. Nanomaterials 2023, 13, 730. https://doi.org/10.3390/nano13040730
Zhao W, Xu X, Wu N, Zhao X, Gong J. Dandelion-Like CuCo2O4@ NiMn LDH Core/Shell Nanoflowers for Excellent Battery-Type Supercapacitor. Nanomaterials. 2023; 13(4):730. https://doi.org/10.3390/nano13040730
Chicago/Turabian StyleZhao, Wenhua, Xingliang Xu, Niandu Wu, Xiaodie Zhao, and Jiangfeng Gong. 2023. "Dandelion-Like CuCo2O4@ NiMn LDH Core/Shell Nanoflowers for Excellent Battery-Type Supercapacitor" Nanomaterials 13, no. 4: 730. https://doi.org/10.3390/nano13040730
APA StyleZhao, W., Xu, X., Wu, N., Zhao, X., & Gong, J. (2023). Dandelion-Like CuCo2O4@ NiMn LDH Core/Shell Nanoflowers for Excellent Battery-Type Supercapacitor. Nanomaterials, 13(4), 730. https://doi.org/10.3390/nano13040730