Luminescent Amorphous Silicon Oxynitride Systems: High Quantum Efficiencies in the Visible Range
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Fabrication
2.2. Characterization of A-SiNxOy Thin Films
2.3. PL EQE (PL QY) Measurement Methods
- (a)
- We directly measured the total incident excitation photons ψ0 in the integration sphere (schematic diagram in Figure 1a);
- (b)
- When the excitation source was shone directly onto samples, we directly measured the unabsorbed excitation photons ψ1 and corresponding emitted photons ϕ1 (schematic diagram in Figure 1b);
- (c)
- When the excitation source was shone indirectly onto samples, we directly measured the unabsorbed excitation photons ψ2 and corresponding emitted photons ϕ2 (schematic diagram in Figure 1c).
3. Results and Discussion
3.1. X-Ray Photoelectron Spectrum (XPS)
3.2. PL Emission and Excitation (PLE) Characteristics
3.3. The Doping Effect of O Atoms on the Luminescence Characteristics
3.4. The Absolute PL Quantum Yield Measurements
3.5. The Temperature-Dependent PL Internal Quantum Efficiencies
3.6. The Temperature-Dependent PL External Quantum Efficiencies
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Toshishige, Y.; Ekaterina, P.D.; Soroush, G.; Cesar, B.P.; Ahmed, S.M.; Hilal, C.; Yang, G.; Ahasan, A.; Wang, S.Y.; Islam, M.S. Modeling of nanohole silicon pin/nip photodetectors: Steady state and transient characteristics. Nanotechnology 2021, 32, 365201. [Google Scholar]
- Yannick, M.; Santiago, B.; Adam, H.; Essam, B.; Olivier, C.; Imitiaz, A.; Mdsamiul, A.; Eslam, E.F.; David, V.P. Standalone. CMOS-based Faraday rotation in a silicon photonic waveguide. Opt. Express 2022, 30, 24602–24610. [Google Scholar]
- Anita, S.A.; Falah, A.H.M. The role of various etching time in Si nanostructures for ultra-high sensitivity photodetector. Optik 2022, 265, 169427. [Google Scholar]
- Perez, D.O.; Gonzalez, F.A.A.; Aceves, M.M. Study of silicon rich oxide light emitter capacitors using textured substrates by metal assisted chemical etching. J. Lumin. 2022, 250, 119054. [Google Scholar] [CrossRef]
- Deng, M.; Samiul, A.; Mahdi, P.; Eslam, E.F.; Ahmad, A.; Naim, B.H.; David, V.P. Design, analysis, and characterization of a compact silicon photonic modulator with meandered phase shifters. Opt. Express 2022, 30, 32990–33002. [Google Scholar]
- Pavesi, L.; Negro, L.D.; Mazzoleni, C.; Franzo, G.; Priolo, F. Optical gain in silicon nanocrystals. Nature 2000, 408, 440–444. [Google Scholar] [CrossRef]
- Chen, K.J.; Huang, X.F.; Xu, J.; Feng, D. Visible photoluminescence in crystallized amorphous Si:H/SiNx:H multiquantum-well structures. Appl. Phys. Lett. 1992, 61, 2069–2071. [Google Scholar] [CrossRef]
- Wilson, W.L.; Szajowski, P.F.; Brus, L.E. Quantum confinement in size-selected, surface-oxidized silicon nanocrystals. Science 1993, 262, 1242–1244. [Google Scholar] [CrossRef]
- Habraken, F.H.P.M.; Kuiper, A.E.T. Silicon nitride and oxynitride films. Mater. Sci. Eng. R 1994, 12, 123–175. [Google Scholar] [CrossRef]
- Garcia, S.; Bravo, D.; Fernandez, M.; Martil, I.; Lopez, F.J. Role of oxygen on the dangling bond configuration of low oxygen content SiNx:H films deposited at room temperature. Appl. Phys. Lett. 1995, 67, 3263–3265. [Google Scholar] [CrossRef] [Green Version]
- Cros, Y.; Krautwurm, J. Structural identification of point defects in amorphous silicon oxynitrides. J. Non-Cryst. Solids 1995, 187, 385–394. [Google Scholar] [CrossRef]
- Warren, W.L.; Kanicki, J.; Poindexter, E.H. Paramagnetic point defects in silicon nitride and silicon oxynitride thin films on silicon. Colloids Surf. A-Physicochem. Eng. Asp. 1996, 115, 311–317. [Google Scholar] [CrossRef]
- Kato, H.; Masuzawa, A.; Noma, T.; Seol, K.S.; Ohki, Y. Thermally induced photoluminescence quenching center in hydrogenated amorphous silicon oxynitride. J. Phys. Condens. Matter 2001, 13, 6541–6549. [Google Scholar]
- Kato, H.; Kashio, N.; Ohki, Y.; Seol, K.S.; Noma, T. Band-tail photoluminescence in hydrogenated amorphous silicon oxynitride and silicon nitride films. J. Appl. Phys. 2003, 93, 239. [Google Scholar] [CrossRef]
- Naskar, S.; Wolter, S.D.; Bower, C.A.; Stoner, B.R.; Glass, J.T. Verification of the O–Si–N complex in plasma-enhanced chemical vapor deposition silicon oxynitride films. Appl. Phys. Lett. 2005, 87, 261907. [Google Scholar]
- Cova, P.; Poulin, S.; Grenier, O.; Masut, R.A. A method for the analysis of multiphase bonding structures in amorphous SiOxNy films. J. Appl. Phys. 2005, 97, 073518. [Google Scholar] [CrossRef]
- Negro, L.D.; Yi, J.H.; Michel, J.; Kimerling, L.C.; Chang, T.F.; Sukhovatkin, V.; Sargent, E.H. Light emission efficiency and dynamics in silicon-rich silicon nitride Films. Appl. Phys. Lett. 2006, 88, 233109. [Google Scholar] [CrossRef]
- Walters, R.J.; Kalkman, J.; Polman, A.; Atwater, H.A.; Dood, M.J.A. Photoluminescence quantum efficiency of dense silicon nanocrystal ensembles in SiO2. Phys. Rev. B 2006, 73, 132302. [Google Scholar] [CrossRef] [Green Version]
- Canham, L.T. Invited talk on luminescent nanoscale silicon. In Proceedings of the Applied Physics Letters 50th Anniversary Reception and Symposium in MRS Fall Meeting (MA), Boston, MA, USA, 25–30 November 2012; pp. 1–27. [Google Scholar]
- Mastronardi, M.L.; Flaig, F.M.; Faulkner, D.E.; Henderson, J.; Kübel, C.; Lemmer, U.; Ozin, G.A. Size-dependent absolute quantum yields for size-separated colloidally-stable silicon nanocrystals. Nano Lett. 2012, 12, 337–342. [Google Scholar] [CrossRef]
- Nguyen, P.D.; Kepaptsoglou, D.M.; Ramasse, Q.M.; Sunding, M.F.; Vestland, L.O.; Finstad, T.G.; Olsen, A. Impact of oxygen bonding on the atomic structure and photoluminescence properties of Si-rich silicon nitride thin films. J. Appl. Phys. 2012, 112, 073514. [Google Scholar] [CrossRef]
- Ruggeri, R.; Neri, F.; Sciuto, A.; Privitera, V.; Spinella, C.; Mannino, G. Luminescence properties of SiOxNy irradiated by IR laser 808 nm: The role of Si quantum dots and Si chemical environment. Appl. Phys. Lett. 2012, 100, 042104. [Google Scholar] [CrossRef]
- Jou, S.K.; Liaw, I.C.; Cheng, Y.C.; Li, C.H. Light emission of silicon oxynitride films prepared by reactive sputtering of silicon. J. Lumin. 2013, 134, 853–857. [Google Scholar] [CrossRef]
- Lin, K.H.; Liou, S.C.; Chen, W.L.; Wu, C.L.; Lin, G.R.; Chang, Y.M. Tunable and stable UV-NIR photoluminescence from annealed SiOx with Si nanoparticles. Opt. Express 2013, 21, 23416–23424. [Google Scholar] [CrossRef] [PubMed]
- Kistner, J.; Schubert, M.B. Impact of the hydrogen content on the photoluminescence efficiency of amorphous silicon alloys. J. Appl. Phys. 2013, 114, 213515. [Google Scholar] [CrossRef]
- Valenta, J.; Greben, M.; Gutsch, S.; Hiller, D.; Zacharias, M. Effects of inter-nanocrystal distance on luminescence quantum yield in ensembles of Si nanocrystals. Appl. Phys. Lett. 2014, 105, 243107. [Google Scholar] [CrossRef] [Green Version]
- Reyes, G.B.D.L.; Dasog, M.; Na, M.X.; Titova, L.V.; Veinot, J.G.C.; Hegmann, F.A. Charge transfer state emission dynamics in blue-emitting functionalized silicon nanocrystals. Phys. Chem. Chem. Phys. 2015, 17, 30125–30133. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Luo, T.Y.; Zhou, M.; Abroshan, H.; Huang, J.C.; Kim, H.J.; Rosi, N.L.; Shao, Z.Z.; Jin, R.C. Silicon nanoparticles with surface nitrogen: 90% quantum yield with narrow luminescence bandwidth and the ligand structure-based energy law. ACS Nano 2016, 10, 8385–8393. [Google Scholar] [CrossRef]
- Liu, X.K.; Zhao, S.Y.; Gu, W.; Zhang, Y.T.; Qiao, X.S.; Ni, Z.Y.; Pi, X.D.; Yang, D.R. Light-emitting diodes based on colloidal silicon quantum dots with octyl and phenylpropyl ligands. ACS Appl. Mater. Interfaces 2018, 10, 5959–5966. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Wu, W.S.; Hao, H.L.; Shen, W.Z. Femtosecond laser-induced size reduction and emission quantum yield enhancement of colloidal silicon nanocrystals: Effect of laser ablation time. Nanotechnology 2018, 29, 365706. [Google Scholar] [CrossRef]
- Zhang, P.Z.; Chen, K.J.; Dong, H.P.; Zhang, P.; Fang, Z.H.; Li, W.; Xu, J.; Huang, X.F. Higher than 60% internal quantum efficiency of photoluminescence from amorphous silicon oxynitride thin films at wavelength of 470 nm. Appl. Phys. Lett. 2014, 105, 011113. [Google Scholar] [CrossRef]
- Zhang, P.Z.; Zhang, L.; Wang, S.K.; Ge, X.F. Tunable Luminescent A-SiNxOy Films with High Internal Quantum Efficiency and Fast Radiative Recombination Rates. Materials 2018, 11, 2494. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.Z.; Zhang, L.; Wu, Y.Z.; Wang, S.K.; Ge, X.F. High photoluminescence quantum yields generated from N-Si-O bonding states in amorphous silicon oxynitride films. Opt. Express 2018, 26, 31617–31624. [Google Scholar] [CrossRef]
- Zhang, P.Z.; Wang, S.K.; Chen, K.J.; Wu, X.L. Investigation on the luminescent stability in amorphous silicon oxynitride systems. Eur. Phys. J. Appl. Phys. 2020, 89, 10304. [Google Scholar] [CrossRef]
- Elham, M.T.F.; Alain, D.; Jens, R.S.; Dorian, Z.; Erik, P.A.M.B. Direct-bandgap emission from hexagonal Ge and SiGe alloys. Nature 2020, 580, 205–209. [Google Scholar]
- Coyopol, A.; Vasquez, A.M.A.; Garcia, S.G.; Lopez, R.R.; Romano, T.R.; Jimenez, V.M.R.; Rosendo, E.; Morales, C.; Galeazzi, R.; Perez, G.S.A. Effect of carbon concentration on optical and structural properties in the transition from Silicon Rich Oxide to SiCxOy films formation. J. Lumin. 2022, 246, 118851. [Google Scholar] [CrossRef]
- Zhang, P.; Hong, J.; Wen, H.M.; Wei, H.; Liu, J.Q.; Yue, F.Y.; Dan, Y.P. Fluorescence optimization and ratio metric thermometry of near-infrared emission in erbium/oxygen-doped crystalline silicon. J. Lumin. 2022, 250, 119035. [Google Scholar] [CrossRef]
- Basak, K.F.; Kayahan, E. White, blue and cyan luminescence from thermally oxidized porous silicon coated by green synthesized carbon nanostructures. Opt. Mater. 2022, 124, 111990. [Google Scholar] [CrossRef]
- Yamada, H.; Watanabe, J.; Nemoto, K.; Sun, H.T.; Shirahata, N. Postproduction Approach to Enhance the External Quantum Efficiency for Red Light-Emitting Diodes Based on Silicon Nanocrystals. Nanomaterials 2022, 12, 4314. [Google Scholar] [CrossRef]
- Dutta, S.; Verbiest, J.G. Fabry-Perot resonant avalanche-mode silicon LEDs for tunable narrow band emission. Opt. Express 2022, 30, 42323–42335. [Google Scholar] [CrossRef]
- Alex, E.K.; Spyros, G. Polarization-dependent photoluminescence properties of fab-compatible nanowire-based nanophotonic structures. Appl. Phys. Lett. 2022, 120, 231104. [Google Scholar]
- Xia, C.T.; Chen, J.X.; Zhao, T.; Fan, L.L.; Yang, D.R.; Ma, X.Y. Electroluminescence from Silicon-Based Light-Emitting Devices with Erbium-Doped ZnO Films: Strong Enhancement Effect of Titanium Co doping. ACS Appl. Mater. Interfaces 2022, 14, 44498–44505. [Google Scholar] [CrossRef] [PubMed]
R | SiH4:N2 (5%:95%) (SCCM) | NH3 (SCCM) | Eopt (eV) | EPL (eV) | EU (eV) | ECB tail (eV) | F.W.H.M. (eV) | ΔEstokes (eV) |
---|---|---|---|---|---|---|---|---|
0.3 | 80 | 1 | 2.93 | 2.06 | 0.07 | 2.86 | 0.59 | 0.8 |
0.5 | 80 | 2 | 3.15 | 2.23 | 0.13 | 3.02 | 0.62 | 0.79 |
1 | 80 | 4 | 3.5 | 2.36 | 0.36 | 3.14 | 0.69 | 0.78 |
1.5 | 80 | 6 | 3.98 | 2.59 | 0.6 | 3.38 | 0.74 | 0.79 |
2.5 | 80 | 10 | 4.46 | 2.83 | 0.8 | 3.66 | 0.8 | 0.83 |
5 | 80 | 20 | 4.62 | 2.95 | 0.87 | 3.75 | 0.82 | 0.81 |
R | PL IQE (%) (RT) | PL QY (%) | |||||
---|---|---|---|---|---|---|---|
RT (Measured) | 240 K | 180 K | 120 K | 60 K | 8 K | ||
0.3 | 25.5 | 1.95 | 2.02 | 2.57 | 3.03 | 3.35 | 3.44 |
0.5 | 42.1 | 4.53 | 5.47 | 6.41 | 7.23 | 7.99 | 8.31 |
1 | 72.7 | 8.46 | 10.10 | 11.92 | 13.21 | 13.81 | 14.23 |
1.5 | 84.1 | 10.08 | 11.16 | 12.81 | 13.51 | 13.61 | 13.79 |
2.5 | 45.6 | 5.78 | 6.90 | 8.16 | 8.98 | 9.89 | 10.25 |
5 | 35.4 | 4.69 | 5.69 | 6.48 | 7.13 | 7.77 | 8.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Zhang, L.; Lyu, F.; Wang, D.; Zhang, L.; Wu, K.; Wang, S.; Tang, C. Luminescent Amorphous Silicon Oxynitride Systems: High Quantum Efficiencies in the Visible Range. Nanomaterials 2023, 13, 1269. https://doi.org/10.3390/nano13071269
Zhang P, Zhang L, Lyu F, Wang D, Zhang L, Wu K, Wang S, Tang C. Luminescent Amorphous Silicon Oxynitride Systems: High Quantum Efficiencies in the Visible Range. Nanomaterials. 2023; 13(7):1269. https://doi.org/10.3390/nano13071269
Chicago/Turabian StyleZhang, Pengzhan, Leng Zhang, Fei Lyu, Danbei Wang, Ling Zhang, Kongpin Wu, Sake Wang, and Chunmei Tang. 2023. "Luminescent Amorphous Silicon Oxynitride Systems: High Quantum Efficiencies in the Visible Range" Nanomaterials 13, no. 7: 1269. https://doi.org/10.3390/nano13071269
APA StyleZhang, P., Zhang, L., Lyu, F., Wang, D., Zhang, L., Wu, K., Wang, S., & Tang, C. (2023). Luminescent Amorphous Silicon Oxynitride Systems: High Quantum Efficiencies in the Visible Range. Nanomaterials, 13(7), 1269. https://doi.org/10.3390/nano13071269