Effect of Silver Nanoparticles on the Optical Properties of Double Line Waveguides Written by fs Laser in Nd3+-Doped GeO2-PbO Glasses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Glass Preparation and Waveguide Fabrication
2.2. Characterization
3. Results and Discussion
3.1. Optical Results
3.2. Raman Results
3.3. Passive Characterization Results
3.4. Active Characterization Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Homoelle, D.; Wielandy, S.; Gaeta, A.L. Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses. Opt. Lett. 1999, 24, 1311. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Yang, L.M.; Liu, J. Femtosecond fiber laser direct writing of optical waveguide in glasses. In Proceedings of the SPIE 8164, Nanophotonics and Macrophotonics for Space Environments V, San Diego, CA, USA, 31 August 2011. [Google Scholar]
- Ayiriveetil, A.; Sabapathy, T.; Varma, G.S.; Ramamurty, U.; Asokan, S. Structural and mechanical characterization on ultrafast laser written chalcogenide glass waveguides. Opt. Mater. Express 2016, 6, 2530–2536. [Google Scholar] [CrossRef]
- Florea, C.; Winick, K.A. Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses. J. Light. Technol. 2003, 2, 246–253. [Google Scholar] [CrossRef] [Green Version]
- Siebenmorgen, J.; Petermann, K.; Huber, G.; Rademaker, K.; Nolte, S.; Tünnermann, A. Femtosecond laser written stress-induced Nd: Y3Al5O12 (Nd: YAG) channel waveguide laser. Appl. Phys. B 2009, 97, 251–255. [Google Scholar] [CrossRef]
- da Silva, D.S.; Wetter, N.U.; de Rossi, W.; Kassab, L.R.P.; Samad, R.E. Production and characterization of femtosecond laser-written double line waveguides in heavy metal oxide glasses. Opt. Mater. 2018, 75, 267–273. [Google Scholar] [CrossRef]
- da Silva, D.S.; Wetter, N.U.; Kassab, L.R.P.; de Rossi, W.; de Araujo, M.S. Double line waveguide amplifiers written by femtosecond laser irradiation in rare-earth doped germanate glasses. J. Lumin. 2020, 217, 116789. [Google Scholar] [CrossRef]
- Bordon, C.D.S.; Dipold, J.; Freitas, A.Z.; Wetter, N.U.; de Rossi, W.; Kassab, L.R.P. A new double-line waveguide architecture for photonic applications using fs laser writing in Nd3+ doped GeO2-PbO glasses. Opt. Mater. 2022, 129, 112495. [Google Scholar] [CrossRef]
- Zmojda, J.; Kochanowicz, M.; Miluski, P.; Baranowska, A.; Pisarski, W.A.; Pisarska, J.; Jadach, R.; Sitarz, M.; Dorosz, D. Structural and optical properties of antimony-germanate-borate glass and glass fiber co-doped Eu3+ and Ag nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 201, 1–7. [Google Scholar] [CrossRef]
- Tang, J.; Lu, K.; Zhang, S.; Zhang, P.; Chen, F.; Dai, S.; Xu, Y. Surface plasmon resonance-enhanced 2 μm emission of bismuth germanate glasses doped with Ho3+/Tm3+ ions. Opt. Mater. 2016, 54, 160–164. [Google Scholar] [CrossRef]
- Kassab, L.R.P.; da Silva, D.M.; Garcia, J.A.M.; da Silva, D.S. Silver nanoparticles enhanced photoluminescence of Nd3+ doped germanate glasses at 1064 nm. Opt. Mater. 2016, 60, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Kassab, L.R.P.; Bomfim, F.A.; Martinelli, J.R.; Wetter, N.U.; Neto, J.J.; de Araújo, C.B. Energy transfer and frequency upconversion in Yb3+-Er3+-doped PbO-GeO2 glass containing silver nanoparticles. Appl. Phys. B 2009, 94, 239–242. [Google Scholar] [CrossRef]
- Ding, D.; Gao, J.; Zhang, S.; Duo, L. The photoluminescence properties of Pr3+-Yb3+ co-doped gallo-germanate glasses and glass ceramics as energy converter. J. Lumin. 2020, 226, 117512. [Google Scholar] [CrossRef]
- Gunji, R.M.; Mattos, G.R.S.; Bordon, C.D.S.; Gómez-Malagón, L.A.; Kassab, L.R.P. Efficiency enhancement of silicon solar cells covered by GeO2-PbO glasses doped with Eu3+ and TiO2 nanoparticles. J. Lumin. 2020, 223, 117244. [Google Scholar] [CrossRef]
- Camilo, M.E.; Silva, E.D.O.; Kassab, L.R.P.; Garcia, J.A.M.; de Araújo, C.B. White light generation controlled by changing the concentration of silver nanoparticles hosted by Ho3+/Tm3+/Yb3+ doped GeO2-PbO glasses. J. Alloys Compd. 2015, 644, 155–158. [Google Scholar] [CrossRef] [Green Version]
- Kassab, L.R.P.; Bordon, C.D.S.; Reyna, A.S.; de Araújo, C.B. Nanoparticles-based photonic metal–dielectric composites: A survey of recent results. Opt. Mater. X 2021, 12, 100098. [Google Scholar] [CrossRef]
- de Araújo, C.B.; Kassab, L.R.P.; da Silva, D.M. Optical properties of glasses and glass-ceramics for optical amplifiers, photovoltaic devices, color displays, optical limiters, and Random Lasers. Opt. Mater. 2022, 131, 112648. [Google Scholar] [CrossRef]
- Phillips, B.; Scroger, M.G. Phase Relations and Glass Formation in the System PbO-GeO. J. Am. Ceram. Soc. 1965, 48, 398–401. [Google Scholar] [CrossRef]
- Gamaly, E.G.; Juodkazis, S.; Mizeikis, V.; Misawa, H.; Rode, A.V.; Krolikowski, W.Z. Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal. Phys. Rev. B 2010, 81, 054113. [Google Scholar] [CrossRef] [Green Version]
- Akhmanov, S.A.; Vyspoukh, V.A.; Chirkin, A.S. Optics of Femtosecond Laser Pulses; Nauka: Moscow, Russia, 1988. [Google Scholar]
- Gattass, R.R.; Mazur, E. Femtosecond laser micromachining in transparent materials. Nat. Photonics. 2008, 2, 219–225. [Google Scholar] [CrossRef]
- Feise, D.; Blume, G.; Dittrich, H.; Kaspari, C.; Paschke, K.; Erbert, G. High-brightness 635nm tapered diode lasers with optimized index guiding. In Proceedings of the SPIE 7583, High-Power Diode Laser Technology and Applications VIII, San Francisco, CA, USA, 17 February 2010. [Google Scholar]
- Yang, D.L.; Pun, E.Y.B.; Chen, B.J.; Lin, H. Radiative transitions and optical gain in Er3+/Yb3+ codoped acid-resistant ion exchanged germanate glass channel waveguides. J. Opt. Soc. Am. B. 2009, 26, 357–363. [Google Scholar] [CrossRef]
- Hua, B.; Shimotsuma, Y.; Nishi, M.; Miura, K.; Hirao, K. Micro-modification of metal-doped glasses by a femtosecond laser. J. Laser Micro/Nanoeng. 2007, 2, 36–39. [Google Scholar] [CrossRef]
- Almeida, J.M.P.; Ferreira, P.H.D.; Manzani, D.; Napoli, M.; Ribeiro, S.J.L.; Mendonca, C.R. Metallic nanoparticles grown in the core of femtosecond laser micromachined waveguides. J. Appl. Phys. 2014, 115, 193507. [Google Scholar] [CrossRef] [Green Version]
- Prasad, P.N. Nanophotonics; Wiley: New York, NY, USA, 2004. [Google Scholar]
- Meier, S.A. Plasmonics: Fundamentals and Applications; Springer: New York, NY, USA, 2007. [Google Scholar]
- Urbieta, M.; Barbry, M.; Zhang, Y.; Koval, P.; Sánchez-Portal, D.; Zabala, N.; Aizpurua, J. Atomic-scale lightning rod effect in plasmonic picocavities: A classical view to a quantum effect. ACS Nano 2018, 12, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Hao, E.; Schatz, G.C. Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 2004, 120, 357–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucacel, R.C.; Marcus, C.; Ardelean, I. FTIR and Raman spectroscopic studies of copper doped 2GeO2-PbO-Ag2O glasses. J. Optoelectron. Adv. Mater. 2007, 9, 747–750. [Google Scholar]
- Fernandez, T.T.; Hernandez, M.; Sotillo, B.; Eaton, S.M.; Jose, G.; Osellame, R.; Jha, A.; Fernandez, P.; Solis, J. Role of ion migrations in ultrafast laser written tellurite glass waveguides. Opt. Express 2014, 22, 15298–15304. [Google Scholar] [CrossRef] [Green Version]
- Sotillo, B.; Bharadwaj, A.V.; Ramos, M.T.; Fernandez, T.; Rampini, S.; Ferrari, M.; Ramponi, R.; Fernandez, P.; Gholipour, B.; Soci, C.; et al. Raman spectroscopy of femtosecond laser written low propagation loss optical waveguides in Schott N-SF8 glass. Opt. Mater. 2017, 62, 626–631. [Google Scholar] [CrossRef] [Green Version]
- Dousti, M.R.; Sahar, M.R.; Amjad, R.J.; Ghoshal, S.K.; Awang, A. Surface enhanced Raman scattering and up-conversion emission by silver nanoparticles in erbium–zinc–tellurite glass. J. Lumin. 2013, 143, 368–373. [Google Scholar] [CrossRef]
- Martins, M.M.; da Silva, D.S.; Kassab, L.R.P.; Ribeiro, S.J.; de Araújo, C.B. Enhancement of Optical Absorption, Photoluminescence and Raman Transitions in Bi2O3-GeO2 Glasses with Embedded Silver Nanoparticles. J. Braz. Chem. Soc. 2015, 26, 2520–2524. [Google Scholar]
- Dai, Y.; Yu, G.; He, M.; Ma, H.; Yan, X.; Ma, G. High repetition rate femtosecond laser irradiation-induced elements redistribution in Ag-doped glass. Appl. Phys. B 2011, 103, 663–667. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Writing speed (mm/s) | 0.5 |
Wavelength (nm) | 800 |
Repetition rate (kHz) | 10 |
Pulse energy (µJ) | 30 |
Temporal pulse length (fs) | 30 |
Focal point | 0.7 mm beneath the surface |
Number of collinear, superimposed lines | 4 and 8 |
GeO2-PbO 1% Nd [8] | GeO2-PbO 1% Nd 2% Ag | |||
---|---|---|---|---|
Parameters | 4 Superimposed Lines | 8 Superimposed Lines | 4 Superimposed Lines | 8 Superimposed Lines |
Mx2 (at 632 nm) | 16.7 | 16.6 | 5.12 | 5.22 |
My2 (at 632 nm) | 14.2 | 15.6 | 3.66 | 5.82 |
Mx2 (at 1064 nm) | 9.9 | 9.9 | 3.0 | 3.1 |
My2 (at 1064 nm) | 8.4 | 9.2 | 2.2 | 3.5 |
Δnx | −5.7 × 10−3 | −7.3 × 10−3 | −5.5 × 10−3 | −8.1 × 10−3 |
Δny | −5.4 × 10−3 | −5.3 × 10−3 | −4.3 × 10−3 | −4.2 × 10−3 |
Propagation losses (dB/cm) | 0.89 | 0.44 | 1.89 | 1.30 |
GINT (dB/cm) | 3.61 | 5.56 | 5.11 | 7.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bordon, C.D.d.S.; Dipold, J.; Wetter, N.U.; de Rossi, W.; Freitas, A.Z.; Kassab, L.R.P. Effect of Silver Nanoparticles on the Optical Properties of Double Line Waveguides Written by fs Laser in Nd3+-Doped GeO2-PbO Glasses. Nanomaterials 2023, 13, 743. https://doi.org/10.3390/nano13040743
Bordon CDdS, Dipold J, Wetter NU, de Rossi W, Freitas AZ, Kassab LRP. Effect of Silver Nanoparticles on the Optical Properties of Double Line Waveguides Written by fs Laser in Nd3+-Doped GeO2-PbO Glasses. Nanomaterials. 2023; 13(4):743. https://doi.org/10.3390/nano13040743
Chicago/Turabian StyleBordon, Camila Dias da Silva, Jessica Dipold, Niklaus U. Wetter, Wagner de Rossi, Anderson Z. Freitas, and Luciana R. P. Kassab. 2023. "Effect of Silver Nanoparticles on the Optical Properties of Double Line Waveguides Written by fs Laser in Nd3+-Doped GeO2-PbO Glasses" Nanomaterials 13, no. 4: 743. https://doi.org/10.3390/nano13040743
APA StyleBordon, C. D. d. S., Dipold, J., Wetter, N. U., de Rossi, W., Freitas, A. Z., & Kassab, L. R. P. (2023). Effect of Silver Nanoparticles on the Optical Properties of Double Line Waveguides Written by fs Laser in Nd3+-Doped GeO2-PbO Glasses. Nanomaterials, 13(4), 743. https://doi.org/10.3390/nano13040743