Improved Electrochemical Hydrogen Peroxide Detection Using a Nickel(II) Phthalimide-Substituted Porphyrazine Combined with Various Carbon Nanomaterials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthetic Procedure for the Preparation of Metallated Porphyrazine
2.2. Fabrication of GC/MWCNTs, GC/MWCNTs/Pz3, GC/SWCNTs, GC/SWCNTs/Pz3, GC/rGO, and GC/rGO/Pz3 Modified Electrodes
3. Results and Discussion
3.1. Synthesis and Physicochemical Characterization
3.2. Electrochemical Study of Pz3 Deposited on MWCNTs, SWCNTs, and rGO
3.3. The Influence of Hydrogen Peroxide on the GC, GC/Pz3, GC/MWCNTs, GC/MWCNTs/Pz3, GC/SWCNTs, GC/SWCNTs/Pz3, GC/rGO, and GC/rGO/Pz3 Electrodes
3.4. Chronoamperometric Measurements of GC/MWCNTs/Pz3, GC/SWCNTs/Pz3, and GC/rGO/Pz3 Electrodes in the Presence of H2O2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, W.; Cai, S.; Ren, Q.-Q.; Wen, W.; Zhao, Y.-D. Recent Advances in Electrochemical Sensing for Hydrogen Peroxide: A Review. Analyst 2012, 137, 49–58. [Google Scholar] [CrossRef]
- Ciriminna, R.; Albanese, L.; Meneguzzo, F.; Pagliaro, M. Hydrogen Peroxide: A Key Chemical for Today’s Sustainable Development. ChemSusChem 2016, 9, 3374–3381. [Google Scholar] [CrossRef]
- Patel, V.; Kruse, P.; Selvaganapathy, P.R. Solid State Sensors for Hydrogen Peroxide Detection. Biosensors 2021, 11, 9. [Google Scholar] [CrossRef]
- Trujillo, R.M.; Barraza, D.E.; Zamora, M.L.; Cattani-Scholz, A.; Madrid, R.E. Nanostructures in Hydrogen Peroxide Sensing. Sensors 2021, 21, 2204. [Google Scholar] [CrossRef] [PubMed]
- Bohrer, F.I.; Colesniuc, C.N.; Park, J.; Ruidiaz, M.E.; Schuller, I.K.; Kummel, A.C.; Trogler, W.C. Comparative Gas Sensing in Cobalt, Nickel, Copper, Zinc, and Metal-Free Phthalocyanine Chemiresistors. J. Am. Chem. Soc. 2009, 131, 478–485. [Google Scholar] [CrossRef]
- Liu, C.J.; Shih, J.J.; Ju, Y.H. Surface Morphology and Gas Sensing Characteristics of Nickel Phthalocyanine Thin Films. Sens. Actuators B Chem. 2004, 99, 344–349. [Google Scholar] [CrossRef]
- de Oliveira, M.S.; Farias, E.A.D.O.; de Sousa, A.M.S.; Dionísio, N.A.; Teixeira, P.R.S.; Teixeira, A.S.D.N.M.; da Silva, D.A.; Eiras, C. Composite Films Based on Copper Nanoparticles and Nickel Phthalocyanine as Electrochemical Sensors for Serotonin Detection. Surf. Interfaces 2021, 25, 101245. [Google Scholar] [CrossRef]
- Kumar, A.; Prasad, R.; Gupta, V.K. Fabrication of PVC Based Membrane Using Nickel Porphyrazine as Ionophore in the Screening of Thiocyanate Ion in Aqueous and Real Samples. Comb. Chem. High Throughput Screen. 2004, 7, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Keskin, B.; Denktaş, C.; Altındal, A.; Avcıata, U.; Gül, A. Synthesis of Ni(II) Porphyrazine Peripherally Octa-Substituted with the 4-Tert-Butylbenzylthio Moiety and Electronic Properties of the Al/Ni(II)Pz/p-Si Schottky Barrier Diode. Polyhedron 2012, 38, 121–125. [Google Scholar] [CrossRef]
- Rodríguez-Morgade, M.S.; Stuzhin, P.A. The Chemistry of Porphyrazines: An Overview. J. Porphyr. Phthalocyanines 2004, 8, 1129–1165. [Google Scholar] [CrossRef]
- Porolnik, W.; Kasprzycka, M.; Teubert, A.; Piskorz, J. Serendipitous Synthesis of Unsymmetrical Porphyrazine: Incomplete Transesterification during Macrocyclization. Inorg. Chem. Commun. 2021, 133, 108953. [Google Scholar] [CrossRef]
- Koza, P.; Koczorowski, T.; Mlynarczyk, D.T.; Goslinski, T. Zinc(II) Sulfanyltribenzoporphyrazines with Bulky Peripheral Substituents—Synthesis, Photophysical Characterization, and Potential Photocytotoxicity. Appl. Sci. 2022, 12, 6825. [Google Scholar] [CrossRef]
- Mlynarczyk, D.T.; Piskorz, J.; Popenda, L.; Stolarska, M.; Szczolko, W.; Konopka, K.; Jurga, S.; Sobotta, L.; Mielcarek, J.; Düzgüneş, N.; et al. S-Seco-Porphyrazine as a New Member of the Seco-Porphyrazine Family—Synthesis, Characterization and Photocytotoxicity against Cancer Cells. Bioorganic Chem. 2020, 96, 103634. [Google Scholar] [CrossRef]
- Koczorowski, T.; Szczolko, W.; Teubert, A.; Goslinski, T. Sulfanyl Porphyrazines with Morpholinylethyl Periphery—Synthesis, Electrochemistry, and Photocatalytic Studies after Deposition on Titanium(IV) Oxide P25 Nanoparticles. Molecules 2021, 26, 2280. [Google Scholar] [CrossRef]
- Ge, Y.; Zhang, Q.; Yang, C.; Zhang, B.; Deng, K. Efficient Visible-Light-Driven Selective Conversion of Glucose to High-Value Chemicals over Bi2WO6/Co-Thioporphyrazine Composite in Aqueous Media. Appl. Catal. A Gen. 2021, 623, 118265. [Google Scholar] [CrossRef]
- Yin, J.; Zhang, Q.; Yang, C.; Zhang, B.; Deng, K. Highly Selective Oxidation of Glucose to Gluconic Acid and Glucaric Acid in Water Catalyzed by an Efficient Synergistic Photocatalytic System. Catal. Sci. Technol. 2020, 10, 2231–2241. [Google Scholar] [CrossRef]
- Mlynarczyk, D.T.; Dlugaszewska, J.; Falkowski, M.; Popenda, L.; Kryjewski, M.; Szczolko, W.; Jurga, S.; Mielcarek, J.; Goslinski, T. Tribenzoporphyrazines with Dendrimeric Peripheral Substituents and Their Promising Photocytotoxic Activity against Staphylococcus Aureus. J. Photochem. Photobiol. B Biol. 2020, 204, 111803. [Google Scholar] [CrossRef] [PubMed]
- Stolarska, M.; Glowacka-Sobotta, A.; Ziental, D.; Dlugaszewska, J.; Falkowski, M.; Mielcarek, J.; Goslinski, T.; Sobotta, L. Photochemical Properties and Photocytotoxicities against Wound Bacteria of Sulfanyl Porphyrazines with Bulky Peripheral Substituents. J. Organomet. Chem. 2021, 934, 121669. [Google Scholar] [CrossRef]
- Piskorz, J.; Lijewski, S.; Gierszewski, M.; Gorniak, K.; Sobotta, L.; Wicher, B.; Tykarska, E.; Düzgüneş, N.; Konopka, K.; Sikorski, M.; et al. Sulfanyl Porphyrazines: Molecular Barrel-like Self-Assembly in Crystals, Optical Properties and in Vitro Photodynamic Activity towards Cancer Cells. Dye. Pigment. 2017, 136, 898–908. [Google Scholar] [CrossRef]
- Medina, D.-P.; Fernández-Ariza, J.; Urbani, M.; Sauvage, F.; Torres, T.; Rodríguez-Morgade, M.S. Tuning the Acceptor Unit of Push–Pull Porphyrazines for Dye-Sensitized Solar Cells. Molecules 2021, 26, 2129. [Google Scholar] [CrossRef]
- Fernández-Ariza, J.; Urbani, M.; Rodríguez-Morgade, M.S.; Torres, T. Panchromatic Photosensitizers Based on Push–Pull, Unsymmetrically Substituted Porphyrazines. Chem. A Eur. J. 2018, 24, 2618–2625. [Google Scholar] [CrossRef] [PubMed]
- Mlynarczyk, D.T.; Ziental, D.; Kolasinski, E.; Sobotta, L.; Koczorowski, T.; Mielcarek, J.; Goslinski, T. Nipagin-Functionalized Porphyrazine and Phthalocyanine—Synthesis, Physicochemical Characterization and Toxicity Study after Deposition on Titanium Dioxide Nanoparticles P25. Molecules 2021, 26, 2657. [Google Scholar] [CrossRef] [PubMed]
- Falkowski, M.; Leda, A.; Rebis, T.; Piskorz, J.; Popenda, L.; Hassani, M.; Mlynarczyk, D.T.; Marszall, M.P.; Milczarek, G. A Synergistic Effect of Phthalimide-Substituted Sulfanyl Porphyrazines and Carbon Nanotubes to Improve the Electrocatalytic Detection of Hydrogen Peroxide. Molecules 2022, 27, 4409. [Google Scholar] [CrossRef] [PubMed]
- Koczorowski, T.; Rębiś, T.; Szczolko, W.; Antecka, P.; Teubert, A.; Milczarek, G.; Goslinski, T. Reduced graphene oxide/iron(II) porphyrazine hybrids on glassy carbon electrode for amperometric detection of NADH and L-cysteine. J. Electroanal. Chem. 2019, 848, 11322. [Google Scholar] [CrossRef]
- Falkowski, M.; Rebis, T.; Piskorz, J.; Popenda, L.; Jurga, S.; Mielcarek, J.; Milczarek, G.; Goslinski, T. Improved Electrocatalytic Response toward Hydrogen Peroxide Reduction of Sulfanyl Porphyrazine/Multiwalled Carbon Nanotube Hybrids Deposited on Glassy Carbon Electrodes. Dye. Pigment. 2016, 134, 569–579. [Google Scholar] [CrossRef]
- Paulraj, P.; Umar, A.; Rajendran, K.; Manikandan, A.; Kumar, R.; Manikandan, E.; Pandian, K.; Mahnashi, M.H.; Alsaiari, M.A.; Ibrahim, A.A.; et al. Solid-State Synthesis of Ag-Doped PANI Nanocomposites for Their End-Use as an Electrochemical Sensor for Hydrogen Peroxide and Dopamine. Electrochim. Acta 2020, 363, 137158. [Google Scholar] [CrossRef]
- Falkowski, M.; Kucinska, M.; Piskorz, J.; Wieczorek-Szweda, E.; Popenda, L.; Jurga, S.; Sikora, A.; Mlynarczyk, D.T.; Murias, M.; Marszall, M.P.; et al. Synthesis of Sulfanyl Porphyrazines with Bulky Peripheral Substituents—Evaluation of Their Photochemical Properties and Biological Activity. J. Photochem. Photobiol. A Chem. 2021, 405, 112964. [Google Scholar] [CrossRef]
- Rębiś, T.; Falkowski, M.; Kryjewski, M.; Popenda, L.; Sobotta, L.; Jurga, S.; Marszall, M.P.; Mielcarek, J.; Milczarek, G.; Goslinski, T. Single-Walled Carbon Nanotube/Sulfanyl Porphyrazine Hybrids Deposited on Glassy Carbon Electrode for Sensitive Determination of Nitrites. Dye. Pigment. 2019, 171, 107660. [Google Scholar] [CrossRef]
- Wildgoose, G.; Banks, C.; Compton, R. Metal nanoparticles and related materials supported on carbon nanotubes: Methods and applications. Small 2006, 2, 182–193. [Google Scholar] [CrossRef]
- Allen, B.; Faulkner, L.R.; White, H.S. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Shu, Y.; Li, B.; Xu, Q.; Gu, P.; Xiao, X.; Liu, F.; Yu, L.; Pang, H.; Hu, X. Cube-like CoSn(OH)6 nanostructure for sensitive electrochemical detection of H2O2 in human serum sample. Sens. Actuators B Chem. 2017, 241, 528–533. [Google Scholar] [CrossRef]
- Welch, C.M.; Banks, C.E.; Simm, A.O.; Compton, R.G. Silver Nanoparticle Assemblies Supported on Glassy-Carbon Electrodes for the Electro-Analytical Detection of Hydrogen Peroxide. Anal. Bioanal. Chem. 2005, 382, 12–21. [Google Scholar] [CrossRef]
- Koposova, E.; Shumilova, G.; Ermolenko, Y.; Kisnerb, A.; Offenhäusser, A.; Mourzina, Y. Direct electrochemistry of cyt c and hydrogen peroxide biosensing on oleylamine-and citrate-stabilized gold nanostructures. Sens. Actuators B Chem. 2015, 207, 1045–1052. [Google Scholar] [CrossRef]
- Nandini, S.; Nalini, S.; Manjunatha, R.; Shanmugam, S.; Melo, J.S.; Suresh, G.S. Electrochemical biosensor for the selective determination of hydrogen peroxide based on the co-deposition of palladium, horseradish peroxidase on functionalized-graphene modified graphite electrode as composite. J. Electroanal. Chem. 2013, 689, 233–242. [Google Scholar] [CrossRef]
- Płócienniczak, P.; Rębiś, T.; Nowicki, M.; Milczarek, G. A Green Approach for Hybrid Material Preparation Based on Carbon Nanotubes/Lignosulfonate Decorated with Silver Nanostructures for Electrocatalytic Sensing of H2O2. J. Electroanal. Chem. 2021, 880, 114896. [Google Scholar] [CrossRef]
- Hu, J.; Lin, Y.; Liao, Y. Inkjet Printed Prussian Blue Films for Hydrogen Peroxide Detection. Anal. Sci. 2012, 28, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.; Tsai, T.; Chen, S. Performing enzyme-free H2O2 biosensor and simultaneous determination for AA, DA, and UA by MWCNT–PEDOT film. Biosens. Bioelectron. 2010, 26, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Achraf Ben Njima, M.; Legrand, L. Ag Nanoparticles-Oxidized Green Rust Nanohybrids for Novel and Efficient Non-Enzymatic H2O2 Electrochemical Sensor. J. Electroanal. Chem. 2022, 906, 116015. [Google Scholar] [CrossRef]
Electrode | Peak Separation [mV] | Electrode | Peak Separation [mV] |
---|---|---|---|
GC | 84 | GC/SWCNTs | 82 |
GC/Pz3 | 155 | GC/SWCNTs/Pz3 | 89 |
GC/MWCNTs | 69 | GC/rGO | 42 |
GC/MWCNTs/Pz3 | 76 | GC/rGO/Pz3 | 87 |
Electrode | Electroactive Surface Area [cm2] | Electrode | Electroactive Surface Area [cm2] |
---|---|---|---|
GC | 0.0198 | GC/SWCNTs | 0.3090 |
GC/Pz3 | 0.0178 | GC/SWCNTs/Pz3 | 0.2503 |
GC/MWCNTs | 0.0577 | GC/rGO | 0.0998 |
GC/MWCNTs/Pz3 | 0.0494 | GC/rGO/Pz3 | 0.0763 |
Electrode Composition | Sensitivity [μA mM−1 cm−2] | LOD[μM] | Linear Range[μM] | Ref. |
---|---|---|---|---|
GC/MWCNTs/FePz | 636 | 0.20 | 1−90 | [23] |
GC/MWCNTs/CoPz | 640 | 0.18 | 1−90 | [23] |
GCE/CoSn(OH)6-Nafion | 0.019 | 1.00 | 4−400 | [31] |
AgNPs/GC | 169 | 2.00 | 5−50 | [32] |
Au/AuNW/HRP | 0.031 | 5.00 | 18−500 | [33] |
HRP-Pd/f-GE | 92.82 | 0.05 | 0.025−3.5 | [34] |
MWCNTs/LS/NAg | 252 | 1.17 | 6−486 | [35] |
PBNPs (100 nm)-SPE | 0.164 | 20.00 | 20−700 | [36] |
MWCNT-PEDOT | 943 | 50.00 | 100−9800 | [37] |
Ag-exGRc-Cl/StS | 115 | 5.00 | 100−8000 | [38] |
GC/MWCNTs/Pz3 | 14.18 | 18.57 | 20−1200 | This work |
GC/SWCNTs/Pz3 | 18.38 | 9.42 | 10−980 | This work |
GC/rGO/Pz3 | 13.11 | 9.15 | 20−750 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leda, A.; Hassani, M.; Rebis, T.; Falkowski, M.; Piskorz, J.; Mlynarczyk, D.T.; McNeice, P.; Milczarek, G. Improved Electrochemical Hydrogen Peroxide Detection Using a Nickel(II) Phthalimide-Substituted Porphyrazine Combined with Various Carbon Nanomaterials. Nanomaterials 2023, 13, 862. https://doi.org/10.3390/nano13050862
Leda A, Hassani M, Rebis T, Falkowski M, Piskorz J, Mlynarczyk DT, McNeice P, Milczarek G. Improved Electrochemical Hydrogen Peroxide Detection Using a Nickel(II) Phthalimide-Substituted Porphyrazine Combined with Various Carbon Nanomaterials. Nanomaterials. 2023; 13(5):862. https://doi.org/10.3390/nano13050862
Chicago/Turabian StyleLeda, Amanda, Mina Hassani, Tomasz Rebis, Michal Falkowski, Jaroslaw Piskorz, Dariusz T. Mlynarczyk, Peter McNeice, and Grzegorz Milczarek. 2023. "Improved Electrochemical Hydrogen Peroxide Detection Using a Nickel(II) Phthalimide-Substituted Porphyrazine Combined with Various Carbon Nanomaterials" Nanomaterials 13, no. 5: 862. https://doi.org/10.3390/nano13050862
APA StyleLeda, A., Hassani, M., Rebis, T., Falkowski, M., Piskorz, J., Mlynarczyk, D. T., McNeice, P., & Milczarek, G. (2023). Improved Electrochemical Hydrogen Peroxide Detection Using a Nickel(II) Phthalimide-Substituted Porphyrazine Combined with Various Carbon Nanomaterials. Nanomaterials, 13(5), 862. https://doi.org/10.3390/nano13050862