β-Bi2O3 Nanosheets Functionalized with Bisphenol A Synthetic Receptors: A Novel Material for Sensitive Photoelectrochemical Platform Construction
Abstract
:1. Introduction
2. Experimental
2.1. Reagents and Apparatus
2.2. Synthesis of β-Bi2O3 Nanosheets
2.3. Fabrication of β-Bi2O3/ITO Electrode
2.4. Functionalization of β-Bi2O3/ITO Electrode with BPA Synthetic Receptors
2.5. Detection of BPA
3. Results and Discussion
3.1. Characterization of β-Bi2O3 and BPA Synthetic Receptors Functionalized β-Bi2O3
3.2. BPA Sensor Feasibility for BPA Detection
3.3. Optimization of the Experimental Conditions
3.3.1. Optimization of MIP/β-Bi2O3/ITO Construction Conditions
3.3.2. Optimization of MIP/β-Bi2O3/ITO Detection Conditions
3.4. Evaluation of the Performance of the β-Bi2O3-Based MIP-PEC Sensor
3.5. Stability, Reproducibility and Selectivity of the β-Bi2O3-Based MIP-PEC Sensor
3.6. Real Sample Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, S.-Y.; Zhang, L.; Zhu, L.-B.; Gao, Y.; Fan, G.-C.; Han, D.M.; Chen, G.; Zhao, W.-W. Bismuth-containing semiconductors for photoelectrochemical sensing and biosensing. Coord. Chem. Rev. 2019, 393, 9–20. [Google Scholar] [CrossRef]
- Yin, S.; Shao, Y.; Hu, Q.; Chen, Y.; Ding, P.; Xia, J.; Li, H. In situ preparation of Bi2O3/(BiO)(2)CO3 composite photocatalyst with enhanced visible-light photocatalytic activity. Res. Chem. Intermed. 2021, 47, 1601–1613. [Google Scholar] [CrossRef]
- Jin, S.; Ma, X.; Pan, J.; Zhu, C.; Saji, S.E.; Hu, J.; Xu, X.; Sun, L.; Yin, Z. Oxygen vacancies activating surface reactivity to favor charge separation and transfer in nanoporous BiVO4 photoanodes. Appl. Catal. B-Environ. 2021, 281, 119477. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, B.; Yuan, S.; Zhang, M.; Ohno, T. Improving g-C3N4 photocatalytic performance by hybridizing with Bi2O2CO3 nanosheets. Catal. Today 2017, 284, 27–36. [Google Scholar] [CrossRef]
- Zhou, Y.; Lv, P.; Meng, X.; Tang, Y.; Huang, P.; Chen, X.; Shen, X.; Zeng, X. CTAB-Assisted Fabrication of Bi2WO6 Thin Nanoplates with High Adsorption and Enhanced Visible Light-Driven Photocatalytic Performance. Molecules 2017, 22, 859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, M.; Yuan, G.; Wang, Z.; Wang, Y.; Guo, J. Synthesis of BiPO4/Bi2S3 Heterojunction with Enhanced Photocatalytic Activity under Visible-Light Irradiation. Nanoscale Res. Lett. 2015, 10, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Du, Z.; Wang, J.; Liu, Y. Enhanced photocatalytic performance of Ag-decorated BiFeO3 in visible light region. J. Sol-Gel Sci. Technol. 2015, 76, 50–57. [Google Scholar] [CrossRef]
- Wang, Q.; Hui, J.; Li, J.; Cai, Y.; Yin, S.; Wang, F.; Su, B. Photodegradation of methyl orange with PANI-modified BiOCl photocatalyst under visible light irradiation. Appl. Surf. Sci. 2013, 283, 577–583. [Google Scholar] [CrossRef]
- Liu, Q.Y.; Han, G.; Zheng, Y.F.; Song, X.C. Synthesis of BiOBrxI1-x solid solutions with dominant exposed {001} and {110} facets and their visible-light-induced photocatalytic properties. Sep. Purif. Technol. 2018, 203, 75–83. [Google Scholar] [CrossRef]
- Hou, J.; Jiang, K.; Shen, M.; Wei, R.; Wu, X.; Idrees, F.; Cao, C. Micro and nano hierachical structures of BiOI/activated carbon for efficient visible-light-photocatalytic reactions. Sci. Rep. 2017, 7, 11665. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Wu, W.; Zhang, Q.; Wang, C.; Fan, Y.; Wu, H.; Zhang, Z. Z-scheme Bi2O3/CuBi2O4 heterojunction enabled sensitive photoelectrochemical detection of aflatoxin B1 for health care, the environment, and food. Biosens. Bioelectron. 2022, 214, 114523. [Google Scholar] [CrossRef] [PubMed]
- Kanagaraj, T.; Kumar, P.S.M.; Thomas, R.; Kulandaivelu, R.; Subramani, R.; Mohamed, R.N.; Lee, S.; Chang, S.W.; Chung, W.J.; Nguyen, D.D. Novel pure alpha-, beta-, and mixed-phase alpha/beta-Bi2O3 photocatalysts for enhanced organic dye degradation under both visible light and solar irradiation. Environ. Res. 2022, 205, 112439. [Google Scholar] [CrossRef]
- Wang, H.; Liang, D.; Xu, Y.; Liang, X.; Qiu, X.; Lin, Z. A highly efficient photoelectrochemical sensor for detection of chlorpyrifos based on 2D/2D beta-Bi2O3/g-C3N4 heterojunctions. Environ. Sci. Nano 2021, 8, 773–783. [Google Scholar] [CrossRef]
- Praveen, S.; Veeralingam, S.; Badhulika, S. A Flexible Self-Powered UV Photodetector and Optical UV Filter Based on beta-Bi2O3/SnO2 Quantum Dots Schottky Heterojunction. Adv. Mater. Interfaces 2021, 8, 2100373. [Google Scholar] [CrossRef]
- Park, S.; Ko, H.; Lee, S.; Kim, H.; Lee, C. Light-activated gas sensing of Bi2O3-core/ZnO-shell nanobelt gas sensors. Thin Solid Film. 2014, 570, 298–302. [Google Scholar] [CrossRef]
- Yang, S.; Jiao, S.; Nie, Y.; Lu, H.; Liu, S.; Zhao, Y.; Gao, S.; Wang, D.; Wang, J.; Li, Y. A self-powered high performance UV-Vis-NIR broadband photodetector based on beta-Bi2O3 nanoparticles through defect engineering. J. Mater. Chem. C 2022, 10, 8364–8372. [Google Scholar] [CrossRef]
- Zahid, A.H.; Han, Q.; Jia, X.; Li, S.; Hangjia, H.; Liu, H. Highly stable 3D multilayered nanoparticles-based beta-Bi2O3 hierarchitecture with enhanced photocatalytic activity. Opt. Mater. 2020, 109, 110389. [Google Scholar] [CrossRef]
- Shi, Y.; Luo, L.; Zhang, Y.; Chen, Y.; Wang, S.; Li, L.; Long, Y.; Jiang, F. Synthesis and characterization of alpha/beta-Bi2O3 with enhanced photocatalytic activity for 17 alpha-ethynylestradiol. Ceram. Int. 2017, 43, 7627–7635. [Google Scholar] [CrossRef]
- Guadalupe Yanez-Cruz, M.; Villanueva-Ibanez, M.; Mendez-Arriaga, F.; Alexander Lucho-Constantino, C.; de los Angeles Hernandez-Perez, M.; del Rocio Ramirez-Vargas, M.; Antonio Flores-Gonzalez, M. Green route synthesis and characterization of beta-Bi2O3/SiO2 and beta-Bi2O3/Bi2O2.75/SiO2 using Juglans regia L. shell aqueous extract and photocatalytic properties for the degradation of RB-5. J. Anal. Sci. Technol. 2022, 13, 52. [Google Scholar] [CrossRef]
- Xie, T.; Yang, J.; Penga, Y.; Wang, J.; Liu, S.; Xu, L.; Liu, C. beta-Bi2O3/SrFe12O19 magnetic photocatalyst: Facile synthesis and its photocatalytic activity. Mater. Technol. 2019, 34, 843–850. [Google Scholar] [CrossRef]
- Zang, Y.; Ju, Y.; Hu, X.; Zhou, H.; Yang, Z.; Jiang, J.; Xue, H. WS2 nanosheets-sensitized CdS quantum dots heterostructure for photoelectrochemical immunoassay of alpha-fetoprotein coupled with enzyme-mediated biocatalytic precipitation. Analyst 2018, 143, 2895–2900. [Google Scholar] [CrossRef]
- Yang, Z.; Shi, Y.; Liao, W.; Yin, H.; Ai, S. A novel signal-on photoelectrochemical biosensor for detection of 5-hydroxymethylcytosine based on in situ electron donor producing strategy and all wavelengths of light irradiation. Sens. Actuators B-Chem. 2016, 223, 621–625. [Google Scholar] [CrossRef]
- Xu, F.; Zhu, Y.-C.; Ma, Z.-Y.; Zhao, W.-W.; Xu, J.-J.; Chen, H.-Y. An ultrasensitive energy-transfer based photoelectrochemical protein biosensor. Chem. Commun. 2016, 52, 3034–3037. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Gao, Y.; Ji, Z.; Zhu, L.B.; Yang, C.; Zhao, Y.; Shu, Y.; Jin, D.; Xu, Q.; Zhao, W.-W. Dual Functional Molecular Imprinted Polymer-Modified Organometal Lead Halide Perovskite: Synthesis and Application for Photoelectrochemical Sensing of Salicylic Acid. Anal. Chem. 2019, 91, 9356–9360. [Google Scholar] [CrossRef] [Green Version]
- Cheong, W.-J.; Ali, F.; Choi, J.-H.; Lee, J.-O.; Sung, K.-Y. Recent applications of molecular imprinted polymers for enantio-selective recognition. Talanta 2013, 106, 45–59. [Google Scholar] [CrossRef] [PubMed]
- Luan, J.; Xu, T.; Cashin, J.; Morrissey, J.J.; Kharasch, E.D.; Singamaneni, S. Environmental Stability of Plasmonic Biosensors Based on Natural versus Artificial Antibody. Anal. Chem. 2018, 90, 7880–7887. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Cao, Y.; Wang, X.; Fang, G.; Wang, S. Prussian blue mediated amplification combined with signal enhancement of ordered mesoporous carbon for ultrasensitive and specific quantification of metolcarb by a three-dimensional molecularly imprinted electrochemical sensor. Biosens. Bioelectron. 2015, 64, 247–254. [Google Scholar] [CrossRef]
- Nie, Y.; Liu, Y.; Su, X.; Ma, Q. Nitrogen-rich quantum dots-based fluorescence molecularly imprinted paper strip for p-nitroaniline detection. Microchem. J. 2019, 148, 162–168. [Google Scholar] [CrossRef]
- Miao, J.; Liu, A.; Wu, L.; Yu, M.; Wei, W.; Liu, S. Magnetic ferroferric oxide and polydopamine molecularly imprinted polymer nanocomposites based electrochemical impedance sensor for the selective separation and sensitive determination of dichlorodiphenyltrichloroethane (DDT). Anal. Chim. Acta 2020, 1095, 82–92. [Google Scholar] [CrossRef]
- Zwierello, W.; Maruszewska, A.; Skorka-Majewicz, M.; Goschorska, M.; Baranowska-Bosiacka, I.; Dec, K.; Styburski, D.; Nowakowska, A.; Gutowska, I. The influence of polyphenols on metabolic disorders caused by compounds released from plastics—Review. Chemosphere 2020, 240, 124901. [Google Scholar] [CrossRef]
- Tarafdar, A.; Sirohi, R.; Balakumaran, P.A.; Reshmy, R.; Madhavan, A.; Sindhu, R.; Binod, P.; Kumar, Y.; Kumar, D.; Sim, S.J. The hazardous threat of Bisphenol A: Toxicity, detection and remediation. J. Hazard. Mater. 2022, 423, 127097. [Google Scholar] [CrossRef]
- Zhang, L.; Er, J.C.; Xu, W.; Qin, X.; Samanta, A.; Jana, S.; Lee, C.-L.K.; Chang, Y.-T. “Orange alert”: A fluorescent detector for bisphenol A in water environments. Anal. Chim. Acta 2014, 815, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Zhou, M.; Gu, J.; Li, X. Spectrophotometric and high performance liquid chromatographic methods for sensitive determination of bisphenol A. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2014, 122, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.; Kim, D.-H.; Lee, W.-Y. Electrochemical Determination of Bisphenol A by Single-Walled Carbon Nanotube Composite Glassy Carbon Electrode. Anal. Lett. 2016, 49, 2018–2030. [Google Scholar] [CrossRef]
- Jin, D.; Xu, Q.; Yu, L.; Hu, X. Photoelectrochemical detection of the herbicide clethodim by using the modified metal-organic framework amino-MIL-125(Ti)/TiO2. Microchim. Acta 2015, 182, 1885–1892. [Google Scholar] [CrossRef]
- Wang, J.; Xu, Q.; Xia, W.W.; Shu, Y.; Jin, D.; Zang, Y.; Hu, X. High sensitive visible light photoelectrochemical sensor based on in-situ prepared flexible Sn3O4 nanosheets and molecularly imprinted polymers. Sens. Actuators B-Chem. 2018, 271, 215–224. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, L.; Wang, C.; Hu, X.; Liu, Y.; Wang, G. Sensitive detection of glyphosate based on a Cu-BTC MOF/g-C3N4 nanosheet photoelectrochemical sensor. Electrochim. Acta 2019, 317, 341–347. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, L.; Wang, C.; Su, D.; Liu, Y.; Hu, X. Photoelectrochemical determination of malathion by using CuO modified with a metal-organic framework of type Cu-BTC. Microchim. Acta 2019, 186, 481. [Google Scholar] [CrossRef]
- Wu, X.; Toe, C.Y.; Su, C.; Ng, Y.H.; Amal, R.; Scott, J. Preparation of Bi-based photocatalysts in the form of powdered particles and thin films: A review. J. Mater. Chem. A 2020, 8, 15302–15318. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, D.; Xing, C.; Chen, L.; Chen, M.; He, M. Novel AgI-decorated beta-Bi2O3 nanosheet heterostructured Z-scheme photocatalysts for efficient degradation of organic pollutants with enhanced performance. Dalton Trans. 2015, 44, 11582–11591. [Google Scholar] [CrossRef]
- Wang, X.; Deng, H.; Wang, C.; Wei, Q.; Wang, Y.; Xiong, X.; Li, C.; Li, W. A pro-gastrin-releasing peptide imprinted photoelectrochemical sensor based on the in situ growth of gold nanoparticles on a MoS2 nanosheet surface. Analyst 2020, 145, 1302–1309. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Zhang, Q.; Jin, D.; Xu, Q.; Hu, X. A promising voltammetric biosensor based on glutamate dehydrogenase/Fe3O4/graphene/chitosan nanobiocomposite for sensitive ammonium determination in PM2.5. Talanta 2019, 197, 622–630. [Google Scholar] [CrossRef]
- Liu, G.; Chen, Z.; Jiang, X.; Feng, D.-Q.; Zhao, J.; Fan, D.; Wang, W. In-situ hydrothermal synthesis of molecularly imprinted polymers coated carbon dots for fluorescent detection of bisphenol A. Sens. Actuators B-Chem. 2016, 228, 302–307. [Google Scholar] [CrossRef]
- Yan, X.; Zhou, C.; Yan, Y.; Zhu, Y. A Simple and Renewable Nanoporous Gold-based Electrochemical Sensor for Bisphenol A Detection. Electroanalysis 2015, 27, 2718–2724. [Google Scholar] [CrossRef]
- Huang, L.-L.; Huang, Y.; Chen, Y.-K.; Ding, Y.-H.; Zhang, W.-F.; Li, X.-J.; Wu, X.-P. Supported Ionic Liquids Solid-Phase Extraction Coupled to Electrochemical Detection for Determination of Trace Bisphenol A. Chin. J. Anal. Chem. 2015, 43, 313–318. [Google Scholar] [CrossRef]
- Liu, Q.; Zeng, X.; Liu, Q.; Hou, X.; Tian, Y.; Wu, L. Sensitive detection of bisphenol A by coupling solid phase microextraction based on monolayer graphene-coated Ag nanoparticles on Si fibers to surface enhanced Raman spectroscopy. Talanta 2018, 187, 13–18. [Google Scholar] [CrossRef]
- Vilchez, J.L.; Zafra, A.; Gonzalez-Casado, A.; Hontorio, E.; del Olmo, M. Determination of trace amounts of bisphenol F, bisphenol A and their diglycidyl ethers in wastewater by gas chromatography-mass spectrometry. Anal. Chim. Acta 2001, 431, 31–40. [Google Scholar] [CrossRef]
Method | Liner Range (μM) | LOD (nM) | Ref. |
---|---|---|---|
MIP@CDs(FD a) | 0.1–4.2 | 30 | [43] |
NPG(ED b) | 0.1–50 | 12.1 | [44] |
β-CD/ILCPE(SILs-SPE-ED c) | 0.04–1 | 4.16 | [45] |
Graphene/Ag/Si(GSPME-SERS d) | 0.00877–0.439 | 4.39 | [46] |
LLE-GC-MS e | 0.088–2.2 | 26.3 | [47] |
MIP/β-Bi2O3/ITO(PEC) | 0.001–1 | 0.179 | This work |
NIP/β-Bi2O3/ITO(PEC) | — | 4.397 | This work |
Sample | Added (nM) | Found (nM) | Recovery (%) | RSD (%) |
---|---|---|---|---|
1 | 0.00 | nd | — | — |
2 | 1.00 | 1.04 | 103.5 | 2.47 |
2 | 10.00 | 10.13 | 101.3 | 2.30 |
3 | 20.00 | 20.51 | 102.6 | 1.85 |
4 | 40.00 | 39.39 | 98.2 | 2.22 |
5 | 80.00 | 77.88 | 97.3 | 1.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.-J.; Shen, Y.-Z.; Wang, Z.; Zhou, B.; Hu, X.-Y.; Xu, Q. β-Bi2O3 Nanosheets Functionalized with Bisphenol A Synthetic Receptors: A Novel Material for Sensitive Photoelectrochemical Platform Construction. Nanomaterials 2023, 13, 915. https://doi.org/10.3390/nano13050915
Yang J-J, Shen Y-Z, Wang Z, Zhou B, Hu X-Y, Xu Q. β-Bi2O3 Nanosheets Functionalized with Bisphenol A Synthetic Receptors: A Novel Material for Sensitive Photoelectrochemical Platform Construction. Nanomaterials. 2023; 13(5):915. https://doi.org/10.3390/nano13050915
Chicago/Turabian StyleYang, Jing-Jing, Ying-Zhuo Shen, Zheng Wang, Bo Zhou, Xiao-Ya Hu, and Qin Xu. 2023. "β-Bi2O3 Nanosheets Functionalized with Bisphenol A Synthetic Receptors: A Novel Material for Sensitive Photoelectrochemical Platform Construction" Nanomaterials 13, no. 5: 915. https://doi.org/10.3390/nano13050915
APA StyleYang, J. -J., Shen, Y. -Z., Wang, Z., Zhou, B., Hu, X. -Y., & Xu, Q. (2023). β-Bi2O3 Nanosheets Functionalized with Bisphenol A Synthetic Receptors: A Novel Material for Sensitive Photoelectrochemical Platform Construction. Nanomaterials, 13(5), 915. https://doi.org/10.3390/nano13050915