Characterization of Carbon-Black-Based Nanocomposite Mixtures of Varying Dispersion for Improving Stochastic Model Fidelity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nanocomposite Spin-Coated Films
2.2. Stochastic Modeling of Fractal CB Nanocomposite RVEs
3. Results
3.1. Influence of CPC Film Thickness on Observed Agglomeration
3.2. Validation of the Thin Film Topography Characterization Method
3.3. Statistical Analysis of Agglomeration in CPC Thin Films of Varied Mixture Quality
3.4. Exploration of Stochastic Model Agglomeration Tunability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wells, B.A.; Wells, K.L. Carbon Black & Oilfield Crayons. Available online: https://aoghs.org/products/oilfield-paraffin/ (accessed on 10 February 2023).
- Grenquist, E.A. The Dispersion of Gas Black and the Physical Properties of Rubber Mixtures. Rubber Chem. Technol. 1931, 4, 29–38. [Google Scholar] [CrossRef]
- Boonstra, B.B.; Medalia, A.I. Effect of Carbon Black Dispersion on the Mechanical Properties of Rubber Vulcanizates. Rubber Chem. Technol. 1963, 36, 115–142. [Google Scholar] [CrossRef]
- Huang, J.-C. Carbon Black Filled Conducting Polymers and Polymer Blends. Adv. Polym. Technol. 2002, 21, 299–313. [Google Scholar] [CrossRef]
- Liu, S.; Chevali, V.S.; Xu, Z.; Hui, D.; Wang, H. A Review of Extending Performance of Epoxy Resins Using Carbon Nanomaterials. Compos. Part B Eng. 2018, 136, 197–214. [Google Scholar] [CrossRef]
- Ahmed, O.; Wang, X.; Tran, M.-V.; Ismadi, M.-Z. Advancements in Fiber-Reinforced Polymer Composite Materials Damage Detection Methods: Towards Achieving Energy-Efficient SHM Systems. Compos. Part B Eng. 2021, 223, 109136. [Google Scholar] [CrossRef]
- Rathod, V.T.; Kumar, J.S.; Jain, A. Polymer and Ceramic Nanocomposites for Aerospace Applications. Appl. Nanosci. 2017, 7, 519–548. [Google Scholar] [CrossRef]
- Akram, S.; Castellon, J.; Agnel, S.; Zhou, K.; Habas, J.; Nazir, M.T. Multilayer Polyimide Nanocomposite Films Synthesis Process Optimization Impact on Nanoparticles Dispersion and Their Dielectric Performance. J. Appl. Polym. Sci. 2021, 138, 49715. [Google Scholar] [CrossRef]
- Nallabothula, H.; Bhattacharjee, Y.; Samantara, L.; Bose, S. Processing-Mediated Different States of Dispersion of Multiwalled Carbon Nanotubes in PDMS Nanocomposites Influence EMI Shielding Performance. ACS Omega 2019, 4, 1781–1790. [Google Scholar] [CrossRef] [Green Version]
- Al-Bahrani, M.; Cree, A. Micro-Scale Damage Sensing in Self-Sensing Nanocomposite Material Based CNTs. Compos. Part B Eng. 2021, 205, 108479. [Google Scholar] [CrossRef]
- Govindaraj, P.; Sokolova, A.; Salim, N.; Juodkazis, S.; Fuss, F.K.; Fox, B.; Hameed, N. Distribution States of Graphene in Polymer Nanocomposites: A Review. Compos. Part B Eng. 2021, 226, 109353. [Google Scholar] [CrossRef]
- Ji, S.H.; Lee, D.; Yun, J.S. Experimental and Theoretical Investigations of the Rheological and Electrical Behavior of Nanocomposites with Universal Percolation Networks. Compos. Part B Eng. 2021, 225, 109317. [Google Scholar] [CrossRef]
- Cetin, M.S.; Karahan Toprakci, H.A. Flexible Electronics from Hybrid Nanocomposites and Their Application as Piezoresistive Strain Sensors. Compos. Part B Eng. 2021, 224, 109199. [Google Scholar] [CrossRef]
- Sui, G.; Liu, D.; Liu, Y.; Ji, W.; Zhang, Q.; Fu, Q. The Dispersion of CNT in TPU Matrix with Different Preparation Methods: Solution Mixing vs Melt Mixing. Polymer 2019, 182, 121838. [Google Scholar] [CrossRef]
- Zare, Y. Evaluation of Nanoparticle Dispersion and Its Influence on the Tensile Modulus of Polymer Nanocomposites by a Modeling Method. Colloid Polym. Sci. 2017, 295, 363–369. [Google Scholar] [CrossRef]
- Bakshi, S.R.; Batista, R.G.; Agarwal, A. Quantification of Carbon Nanotube Distribution and Property Correlation in Nanocomposites. Compos. Part A Appl. Sci. Manuf. 2009, 40, 1311–1318. [Google Scholar] [CrossRef]
- Jouault, N.; Dalmas, F.; Boué, F.; Jestin, J. Multiscale Characterization of Filler Dispersion and Origins of Mechanical Reinforcement in Model Nanocomposites. Polymer 2012, 53, 761–775. [Google Scholar] [CrossRef]
- Verleysen, E.; De Temmerman, P.-J.; Van Doren, E.; Abi Daoud Francisco, M.; Mast, J. Quantitative Characterization of Aggregated and Agglomerated Titanium Dioxide Nanomaterials by Transmission Electron Microscopy. Powder Technol. 2014, 258, 180–188. [Google Scholar] [CrossRef]
- Xie, S.; Harkin-Jones, E.; Shen, Y.; Hornsby, P.; McAfee, M.; McNally, T.; Patel, R.; Benkreira, H.; Coates, P. Quantitative Characterization of Clay Dispersion in Polypropylene-Clay Nanocomposites by Combined Transmission Electron Microscopy and Optical Microscopy. Mater. Lett. 2010, 64, 185–188. [Google Scholar] [CrossRef]
- Fu, X.; Wang, J.; Ding, J.; Wu, H.; Dong, Y.; Fu, Y. Quantitative Evaluation of Carbon Nanotube Dispersion through Scanning Electron Microscopy Images. Compos. Sci. Technol. 2013, 87, 170–173. [Google Scholar] [CrossRef]
- Yahya, N.Z.; Rusop, M. Investigation on the Optical and Surface Morphology of Conjugated Polymer MEH-PPV:ZnO Nanocomposite Thin Films. J. Nanomater. 2012, 2012, 8. [Google Scholar] [CrossRef] [Green Version]
- Voo, R.; Mariatti, M.; Sim, L. Properties of Epoxy Nanocomposite Thin Films Prepared by Spin Coating Technique. J. Plast. Film Sheeting 2011, 27, 331–346. [Google Scholar] [CrossRef]
- Bunk, J.K.G.; Drechsler, A.; Friedel, P.; Rauch, S.; Uhlmann, P.; Stamm, M.; Rennekamp, R. Nanoparticle Distribution in Three-Layer Polymer-Nanoparticle Composite Films: Comparison of Experiment and Theory. Part. Part. Syst. Charact. 2015, 32, 123–131. [Google Scholar] [CrossRef]
- Yazdani, H.; Smith, B.E.; Hatami, K. Multi-Walled Carbon Nanotube-Filled Polyvinyl Chloride Composites: Influence of Processing Method on Dispersion Quality, Electrical Conductivity and Mechanical Properties. Compos. Part A Appl. Sci. Manuf. 2016, 82, 65–77. [Google Scholar] [CrossRef]
- Toor, A.; So, H.; Pisano, A.P. Improved Dielectric Properties of Polyvinylidene Fluoride Nanocomposite Embedded with Poly(Vinylpyrrolidone)-Coated Gold Nanoparticles. ACS Appl. Mater. Interfaces 2017, 9, 6369–6375. [Google Scholar] [CrossRef]
- Suter, M.; Ergeneman, O.; Zürcher, J.; Moitzi, C.; Pané, S.; Rudin, T.; Pratsinis, S.E.; Nelson, B.J.; Hierold, C. A Photopatternable Superparamagnetic Nanocomposite: Material Characterization and Fabrication of Microstructures. Sens. Actuators B Chem. 2011, 156, 433–443. [Google Scholar] [CrossRef] [Green Version]
- Kang, C.; Xu, J.; Niu, L.; Li, C.; Fan, J. Quantitative Evaluation of Nanoparticle Dispersion Based on Modeling Methods and Image Analysis: A Case Study Nano-Sb2O3 Filled Poly (Butylene Terephthalate) Composites. Polym. Compos. 2021, 42, 3098–3113. [Google Scholar] [CrossRef]
- Romyen, N.; Thongyai, S.; Praserthdam, P. Surfactant-Dispersed Carbon Black in Polyimide Nanocomposites: Spectroscopic Monitoring of the Dispersion State in the Polymer Matrix. J. Appl. Polym. Sci. 2010, 115, 1622–1629. [Google Scholar] [CrossRef]
- Singh, A.R.; Deshpande, V.D. Processing and Characterization of Extruded PET and Its R-PET and MWCNT Nanocomposite Thin Films by Spin Coating. Bull. Mater. Sci. 2016, 39, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Zaccardi, F.; Santonicola, M.G.; Laurenzi, S. Quantitative Assessment of Nanofiller Dispersion Based on Grayscale Image Analysis: A Case Study on Epoxy/Carbon Nanocomposites. Compos. Part A Appl. Sci. Manuf. 2018, 115, 302–310. [Google Scholar] [CrossRef]
- Yourdkhani, M.; Hubert, P. Quantitative Dispersion Analysis of Inclusions in Polymer Composites. ACS Appl. Mater. Interfaces 2013, 5, 35–41. [Google Scholar] [CrossRef]
- Shojaeiarani, J.; Bajwa, D.S.; Stark, N.M. Spin-Coating: A New Approach for Improving Dispersion of Cellulose Nanocrystals and Mechanical Properties of Poly (Lactic Acid) Composites. Carbohydr. Polym. 2018, 190, 139–147. [Google Scholar] [CrossRef]
- Schneider, S.; Eppler, F.; Weber, M.; Olowojoba, G.; Weiss, P.; Hübner, C.; Mikonsaari, I.; Freude, W.; Koos, C. Multiscale Dispersion-State Characterization of Nanocomposites Using Optical Coherence Tomography. Sci. Rep. 2016, 6, 31733. [Google Scholar] [CrossRef]
- Carotenuto, G.; Her, Y.-S.; Matijević, E. Preparation and Characterization of Nanocomposite Thin Films for Optical Devices. Ind. Eng. Chem. Res. 1996, 35, 2929–2932. [Google Scholar] [CrossRef]
- Yaklin, M.A.; Duxbury, P.M.; Mackay, M.E. Control of Nanoparticle Dispersion in Thin Polymer Films. Soft Matter 2008, 4, 2441. [Google Scholar] [CrossRef]
- Quercia, L.; Loffredo, F.; Di Francia, G. Influence of Filler Dispersion on Thin Film Composites Sensing Properties. Sens. Actuators B Chem. 2005, 109, 153–158. [Google Scholar] [CrossRef]
- Abargues, R.; Abderrafi, K.; Pedrueza, E.; Gradess, R.; Marqués-Hueso, J.; Valdés, J.L.; Martínez-Pastor, J. Optical Properties of Different Polymer Thin Films Containing in Situ Synthesized Ag and Au Nanoparticles. New J. Chem. 2009, 33, 1720. [Google Scholar] [CrossRef]
- Wong, H.C.; Cabral, J.T. Nanoparticle Aggregation Behaviour in Polymer Nanocomposites: Bulk vs. Thin Films. J. Phys. Conf. Ser. 2010, 247, 012046. [Google Scholar] [CrossRef] [Green Version]
- Albright, T.B.; Hobeck, J.D. High-Fidelity Stochastic Modeling of Carbon Black-Based Conductive Polymer Composites for Strain and Fatigue Sensing. J. Mater. Sci. 2021, 56, 6861–6877. [Google Scholar] [CrossRef]
- Feng, Y.; Zou, H.; Tian, M.; Zhang, L.; Mi, J. Relationship between Dispersion and Conductivity of Polymer Nanocomposites: A Molecular Dynamics Study. J. Phys. Chem. B 2012, 116, 13081–13088. [Google Scholar] [CrossRef]
- Akram, S.; Castellon, J.; Kai, Z.; Agnel, S.; Habas, J.-P.; Nazir, M.T. Dielectric Properties and Modeling of Multilayer Polyimide Nanocomposite to Highlight the Impact of Nanoparticles Dispersion. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1238–1246. [Google Scholar] [CrossRef]
- Coupette, F.; Zhang, L.; Kuttich, B.; Chumakov, A.; Roth, S.V.; González-García, L.; Kraus, T.; Schilling, T. Percolation of Rigid Fractal Carbon Black Aggregates. J. Chem. Phys. 2021, 155, 124902. [Google Scholar] [CrossRef] [PubMed]
- Asylbekov, E.; Trunk, R.; Krause, M.J.; Nirschl, H. Microscale Discrete Element Method Simulation of the Carbon Black Aggregate Fracture Behavior in a Simple Shear Flow. Energy Technol. 2021, 9, 2000850. [Google Scholar] [CrossRef]
- Thostenson, E.; Li, C.; Chou, T. Nanocomposites in Context. Compos. Sci. Technol. 2005, 65, 491–516. [Google Scholar] [CrossRef]
- Albright, T.B.; Hobeck, J.D. Development of Manufacturing and Characterization Methods for Carbon Black-Based Conductive Polymer Composite Sensors. In Proceedings of the Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications; American Society of Mechanical Engineers, Online, 16–19 November 2020. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Donnet, J.-B.; Bansal, R.C.; Wang, M.-J. Carbon Black; Donnet, J.-B., Ed.; Routledge: Oxford, UK, 2018; ISBN 978-1-315-13876-3. [Google Scholar]
- Meakin, P. A Historical Introduction to Computer Models for Fractal Aggregates. J. Sol-Gel Sci. Technol. 1999, 15, 97–117. [Google Scholar] [CrossRef]
- Morán, J.; Fuentes, A.; Liu, F.; Yon, J. FracVAL: An Improved Tunable Algorithm of Cluster–Cluster Aggregation for Generation of Fractal Structures Formed by Polydisperse Primary Particles. Comput. Phys. Commun. 2019, 239, 225–237. [Google Scholar] [CrossRef]
- Kanoun, O.; Bouhamed, A.; Ramalingame, R.; Bautista-Quijano, J.R.; Rajendran, D.; Al-Hamry, A. Review on Conductive Polymer/CNTs Nanocomposites Based Flexible and Stretchable Strain and Pressure Sensors. Sensors 2021, 21, 341. [Google Scholar] [CrossRef]
- Simmons, J.G. Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film. J. Appl. Phys. 1963, 34, 1793–1803. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Song, M. Highly Conductive Carbon Nanotube/Polymer Nanocomposites Achievable? Macromol. Theory Simul. 2009, 18, 155–161. [Google Scholar] [CrossRef]
- Albright, T.; Hobeck, J.D. Stochastic Modeling of Composite Strain and Fatigue Sensing Elements. In Proceedings of the Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2019, Denver, CO, USA, 4–7 March 2019; Wang, K.-W., Sohn, H., Huang, H., Lynch, J.P., Eds.; SPIE: Bellingham, WA, USA, 2019; p. 42. [Google Scholar]
- Stukowski, A. Visualization and Analysis of Atomistic Simulation Data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2009, 18, 15012. [Google Scholar] [CrossRef]
- Mouhamad, Y.; Mokarian-Tabari, P.; Clarke, N.; Jones, R.A.L.; Geoghegan, M. Dynamics of Polymer Film Formation during Spin Coating. J. Appl. Phys. 2014, 116, 123513. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; The MIT Press: Cambridge, MA, USA, 1992; ISBN 978-0-262-27555-2. [Google Scholar]
- Mac Fhionnlaoich, N.; Guldin, S. Information Entropy as a Reliable Measure of Nanoparticle Dispersity. Chem. Mater. 2020, 32, 3701–3706. [Google Scholar] [CrossRef] [PubMed]
- Sabirov, D.; Tukhbatullina, A.; Shepelevich, I. Information Entropy of Regular Dendrimer Aggregates and Irregular Intermediate Structures. Liquids 2021, 1, 25–35. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albright, T.; Hobeck, J. Characterization of Carbon-Black-Based Nanocomposite Mixtures of Varying Dispersion for Improving Stochastic Model Fidelity. Nanomaterials 2023, 13, 916. https://doi.org/10.3390/nano13050916
Albright T, Hobeck J. Characterization of Carbon-Black-Based Nanocomposite Mixtures of Varying Dispersion for Improving Stochastic Model Fidelity. Nanomaterials. 2023; 13(5):916. https://doi.org/10.3390/nano13050916
Chicago/Turabian StyleAlbright, Tyler, and Jared Hobeck. 2023. "Characterization of Carbon-Black-Based Nanocomposite Mixtures of Varying Dispersion for Improving Stochastic Model Fidelity" Nanomaterials 13, no. 5: 916. https://doi.org/10.3390/nano13050916
APA StyleAlbright, T., & Hobeck, J. (2023). Characterization of Carbon-Black-Based Nanocomposite Mixtures of Varying Dispersion for Improving Stochastic Model Fidelity. Nanomaterials, 13(5), 916. https://doi.org/10.3390/nano13050916