A Laser-Induced Graphene-Titanium(IV) Oxide Composite for Adsorption Enhanced Photodegradation of Methyl Orange
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of LIG/TiO2 Composite
2.3. Characterization
2.4. Adsorbate
2.5. Effect of Initial Concentration
2.6. Effect of Solution pH
2.7. Effect of LIG/TiO2 Dose
2.8. Adsorption Isotherms
2.9. Adsorption Thermodynamics Study
2.10. Photocatalytic Degradation Study
3. Results and Discussion
3.1. Adsorption Isotherms and Thermodynamic Study
3.2. Photocatalytic Degradation Efficiency
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Khan, N.A.; Khan, S.U.; Ahmed, S.; Farooqi, I.H.; Yousefi, M.; Mohammadi, A.A.; Changani, F. Recent Trends in Disposal and Treatment Technologies of Emerging-Pollutants-A Critical Review. TrAC Trends Anal. Chem. 2020, 122, 115744. [Google Scholar] [CrossRef]
- Peña-Guzmán, C.; Ulloa-Sánchez, S.; Mora, K.; Helena-Bustos, R.; Lopez-Barrera, E.; Alvarez, J.; Rodriguez-Pinzón, M. Emerging Pollutants in the Urban Water Cycle in Latin America: A Review of the Current Literature. J. Environ. Manag. 2019, 237, 408–423. [Google Scholar] [CrossRef]
- Dehghani, M.H.; Hassani, A.H.; Karri, R.R.; Younesi, B.; Shayeghi, M.; Salari, M.; Zarei, A.; Yousefi, M.; Heidarinejad, Z. Process Optimization and Enhancement of Pesticide Adsorption by Porous Adsorbents by Regression Analysis and Parametric Modelling. Sci. Rep. 2021, 11, 11719. [Google Scholar] [CrossRef] [PubMed]
- Neethu, N.; Choudhury, T. Treatment of Methylene Blue and Methyl Orange Dyes in Wastewater by Grafted Titania Pillared Clay Membranes. Recent Pat. Nanotechnol. 2018, 12, 200–207. [Google Scholar] [CrossRef]
- Tian, C.; Zhao, H.; Sun, H.; Xiao, K.; Keung Wong, P. Enhanced Adsorption and Photocatalytic Activities of Ultrathin Graphitic Carbon Nitride Nanosheets: Kinetics and Mechanism. Chem. Eng. J. 2020, 381, 122760. [Google Scholar] [CrossRef]
- Mejias Carpio, I.E.; Mangadlao, J.D.; Nguyen, H.N.; Advincula, R.C.; Rodrigues, D.F. Graphene Oxide Functionalized with Ethylenediamine Triacetic Acid for Heavy Metal Adsorption and Anti-Microbial Applications. Carbon N. Y. 2014, 77, 289–301. [Google Scholar] [CrossRef]
- Chang, P.-H.; Li, Z.; Jiang, W.-T.; Jean, J.-S. Adsorption and Intercalation of Tetracycline by Swelling Clay Minerals. Appl. Clay Sci. 2009, 46, 27–36. [Google Scholar] [CrossRef]
- Repo, E.; Warchoł, J.K.; Bhatnagar, A.; Sillanpää, M. Heavy Metals Adsorption by Novel EDTA-Modified Chitosan–Silica Hybrid Materials. J. Colloid Interface Sci. 2011, 358, 261–267. [Google Scholar] [CrossRef]
- Gao, H.; Sun, Y.; Zhou, J.; Xu, R.; Duan, H. Mussel-Inspired Synthesis of Polydopamine-Functionalized Graphene Hydrogel as Reusable Adsorbents for Water Purification. ACS Appl. Mater. Interfaces 2013, 5, 425–432. [Google Scholar] [CrossRef]
- Ma, X.; Zhao, S.; Tian, Z.; Duan, G.; Pan, H.; Yue, Y.; Li, S.; Jian, S.; Yang, W.; Liu, K.; et al. MOFs Meet Wood: Reusable Magnetic Hydrophilic Composites toward Efficient Water Treatment with Super-High Dye Adsorption Capacity at High Dye Concentration. Chem. Eng. J. 2022, 446, 136851. [Google Scholar] [CrossRef]
- Jjagwe, J.; Olupot, P.W.; Menya, E.; Kalibbala, H.M. Synthesis and Application of Granular Activated Carbon from Biomass Waste Materials for Water Treatment: A Review. J. Bioresour. Bioprod. 2021, 6, 292–322. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, L. Progress in Designing Effective Photoelectrodes for Solar Water Splitting. Cuihua Xuebao/Chin. J. Catal. 2018, 39, 369–378. [Google Scholar] [CrossRef]
- Li, Y.; Cui, W.; Liu, L.; Zong, R.; Yao, W.; Liang, Y.; Zhu, Y. Removal of Cr(VI) by 3D TiO2-Graphene Hydrogel via Adsorption Enriched with Photocatalytic Reduction. Appl. Catal. B Environ. 2016, 199, 412–423. [Google Scholar] [CrossRef]
- Kant, S.; Pathania, D.; Singh, P.; Dhiman, P.; Kumar, A. Removal of Malachite Green and Methylene Blue by Fe0.01Ni0.01Zn0.98O/Polyacrylamide Nanocomposite Using Coupled Adsorption and Photocatalysis. Appl. Catal. B Environ. 2014, 147, 340–352. [Google Scholar] [CrossRef]
- Jian, S.; Tian, Z.; Zhang, K.; Duan, G.; Yang, W.; Jiang, S. Hydrothermal Synthesis of Ce-Doped ZnO Heterojunction Supported on Carbon Nanofibers with High Visible Light Photocatalytic Activity. Chem. Res. Chin. Univ. 2021, 37, 565–570. [Google Scholar] [CrossRef]
- Lu, L.; Shan, R.; Shi, Y.; Wang, S.; Yuan, H. A Novel TiO2/Biochar Composite Catalysts for Photocatalytic Degradation of Methyl Orange. Chemosphere 2019, 222, 391–398. [Google Scholar] [CrossRef]
- Hanifehpour, Y.; Hamnabard, N.; Khomami, B.; Joo, S.W.; Min, B.-K.; Jung, J.H. A Novel Visible-Light Nd-Doped CdTe Photocatalyst for Degradation of Reactive Red 43: Synthesis, Characterization, and Photocatalytic Properties. J. Rare Earths 2016, 34, 45–54. [Google Scholar] [CrossRef]
- Feng, P.; Zhao, J.; Zhang, J.; Wei, Y.; Wang, Y.; Li, H.; Wang, Y. Long Persistent Photocatalysis of Magnesium Gallate Nanorodes. J. Alloy. Compd. 2017, 695, 1884–1890. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; He, T.; Wang, Y.; Ning, G.; Xu, Z.; Chen, X.; Hu, X.; Wu, Y.; Zhao, Y. Synergistic Adsorption-Photocatalytic Degradation Effect and Norfloxacin Mechanism of ZnO/ZnS@BC under UV-Light Irradiation. Sci. Rep. 2020, 10, 11903. [Google Scholar] [CrossRef]
- Fu, C.-C.; Juang, R.-S.; Huq, M.M.; Hsieh, C.-T. Enhanced Adsorption and Photodegradation of Phenol in Aqueous Suspensions of Titania/Graphene Oxide Composite Catalysts. J. Taiwan Inst. Chem. Eng. 2016, 67, 338–345. [Google Scholar] [CrossRef]
- Bullock, R.M. Reaction: Earth-Abundant Metal Catalysts for Energy Conversions. Chem 2017, 2, 444–446. [Google Scholar] [CrossRef] [Green Version]
- Védrine, J.C. Metal Oxides in Heterogeneous Oxidation Catalysis: State of the Art and Challenges for a More Sustainable World. ChemSusChem 2019, 12, 577–588. [Google Scholar] [CrossRef] [PubMed]
- Antonopoulou, M.; Karagianni, P.; Giannakas, A.; Makrigianni, V.; Mouzourakis, E.; Deligiannakis, Y.; Konstantinou, I. Photocatalytic Degradation of Phenol by Char/N-TiO2 and Char/N-F-TiO2 Composite Photocatalysts. Catal. Today 2017, 280, 114–121. [Google Scholar] [CrossRef]
- Makrigianni, V.; Giannakas, A.; Daikopoulos, C.; Deligiannakis, Y.; Konstantinou, I. Preparation, Characterization and Photocatalytic Performance of Pyrolytic-Tire-Char/TiO2 Composites, toward Phenol Oxidation in Aqueous Solutions. Appl. Catal. B Environ. 2015, 174–175, 244–252. [Google Scholar] [CrossRef]
- Zhao, H.; Cui, S.; Yang, L.; Li, G.; Li, N.; Li, X. Synthesis of Hierarchically Meso-Macroporous TiO2/CdS Heterojunction Photocatalysts with Excellent Visible-Light Photocatalytic Activity. J. Colloid Interface Sci. 2018, 512, 47–54. [Google Scholar] [CrossRef]
- Kim, J.R.; Kan, E. Heterogeneous Photocatalytic Degradation of Sulfamethoxazole in Water Using a Biochar-Supported TiO2 Photocatalyst. J. Environ. Manag. 2016, 180, 94–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, J.F.; Leal, I.; Bednarczyk, K.; Gmurek, M.; Stelmachowski, M.; Zaleska-Medynska, A.; Quinta-Ferreira, M.E.; Costa, R.; Quinta-Ferreira, R.M.; Martins, R.C. Detoxification of Parabens Using UV-A Enhanced by Noble Metals-TiO2 Supported Catalysts. J. Environ. Chem. Eng. 2017, 5, 3065–3074. [Google Scholar] [CrossRef]
- Kondratyeva, I.; Orzeł, Ł.; Kobasa, I.; Doroshenko, A.; Macyk, W. Photosensitization of Titanium Dioxide with 4′-Dimethylaminoflavonol. Mater. Sci. Semicond. Process. 2016, 42, 62–65. [Google Scholar] [CrossRef]
- Murgolo, S.; Petronella, F.; Ciannarella, R.; Comparelli, R.; Agostiano, A.; Curri, M.L.; Mascolo, G. UV and Solar-Based Photocatalytic Degradation of Organic Pollutants by Nano-Sized TiO2 Grown on Carbon Nanotubes. Catal. Today 2015, 240, 114–124. [Google Scholar] [CrossRef]
- Wang, L.; Li, Z.; Chen, J.; Huang, Y.; Zhang, H.; Qiu, H. Enhanced Photocatalytic Degradation of Methyl Orange by Porous Graphene/ZnO Nanocomposite. Environ. Pollut. 2019, 249, 801–811. [Google Scholar] [CrossRef]
- Leary, R.; Westwood, A. Carbonaceous Nanomaterials for the Enhancement of TiO2 Photocatalysis. Carbon N. Y. 2011, 49, 741–772. [Google Scholar] [CrossRef]
- Zhang, Z.; He, D.; Liu, H.; Ren, M.; Zhang, Y.; Qu, J.; Lu, N.; Guan, J.; Yuan, X. Synthesis of Graphene/Black Phosphorus Hybrid with Highly Stable P-C Bond towards the Enhancement of Photocatalytic Activity. Environ. Pollut. 2019, 245, 950–956. [Google Scholar] [CrossRef] [PubMed]
- Khalid, N.R.; Hong, Z.; Ahmed, E.; Zhang, Y.; Chan, H.; Ahmad, M. Synergistic Effects of Fe and Graphene on Photocatalytic Activity Enhancement of TiO2 under Visible Light. Appl. Surf. Sci. 2012, 258, 5827–5834. [Google Scholar] [CrossRef]
- Das, P.; Ganguly, S.; Saha, A.; Noked, M.; Margel, S.; Gedanken, A. Carbon-Dots-Initiated Photopolymerization: An In Situ Synthetic Approach for MXene/Poly(Norepinephrine)/Copper Hybrid and Its Application for Mitigating Water Pollution. ACS Appl. Mater. Interfaces 2021, 13, 31038–31050. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Zhang, H.; Cai, T.; Chen, J.; Li, Z.; Guan, M.; Qiu, H. Porous Graphene Decorated Silica as a New Stationary Phase for Separation of Sulfanilamide Compounds in Hydrophilic Interaction Chromatography. Chin. Chem. Lett. 2019, 30, 863–866. [Google Scholar] [CrossRef]
- Kan, Y.; Ning, G.; Ma, X. Sulfur-Decorated Nanomesh Graphene for High-Performance Supercapacitors. Chin. Chem. Lett. 2017, 28, 2277–2280. [Google Scholar] [CrossRef]
- Moussa, H.; Girot, E.; Mozet, K.; Alem, H.; Medjahdi, G.; Schneider, R. ZnO Rods/Reduced Graphene Oxide Composites Prepared via a Solvothermal Reaction for Efficient Sunlight-Driven Photocatalysis. Appl. Catal. B Environ. 2016, 185, 11–21. [Google Scholar] [CrossRef]
- Ganguly, S.; Mondal, S.; Das, P.; Bhawal, P.; Das, T.K.; Bose, M.; Choudhary, S.; Gangopadhyay, S.; Das, A.K.; Das, N.C. Natural Saponin Stabilized Nano-Catalyst as Efficient Dye-Degradation Catalyst. Nano-Struct. Nano-Objects 2018, 16, 86–95. [Google Scholar] [CrossRef]
- Ahmad, M.; Ahmed, E.; Hong, Z.L.; Xu, J.F.; Khalid, N.R.; Elhissi, A.; Ahmed, W. A Facile One-Step Approach to Synthesizing ZnO/Graphene Composites for Enhanced Degradation of Methylene Blue under Visible Light. Appl. Surf. Sci. 2013, 274, 273–281. [Google Scholar] [CrossRef]
- Luong, D.X.; Yang, K.; Yoon, J.; Singh, S.P.; Wang, T.; Arnusch, C.J.; Tour, J.M. Laser-Induced Graphene Composites as Multifunctional Surfaces. ACS Nano 2019, 13, 2579–2586. [Google Scholar] [CrossRef]
- Powell, C.D.; Pisharody, L.; Thamaraiselvan, C.; Gupta, A.; Park, H.; Tesfahunegn, B.A.; Sharma, C.P.; Kleinberg, M.N.; Burch, R.; Arnusch, C.J. Functional Laser-Induced Graphene Composite Art. ACS Appl. Nano Mater. 2022, 5, 11923–11931. [Google Scholar] [CrossRef]
- Singh, S.P.; Li, Y.; Be’er, A.; Oren, Y.; Tour, J.M.; Arnusch, C.J. Laser-Induced Graphene Layers and Electrodes Prevents Microbial Fouling and Exerts Antimicrobial Action. ACS Appl. Mater. Interfaces 2017, 9, 18238–18247. [Google Scholar] [CrossRef]
- Rathinam, K.; Singh, S.P.; Li, Y.; Kasher, R.; Tour, J.M.; Arnusch, C.J. Polyimide Derived Laser-Induced Graphene as Adsorbent for Cationic and Anionic Dyes. Carbon N. Y. 2017, 124, 515–524. [Google Scholar] [CrossRef]
- Gupta, A.; Holoidovsky, L.; Thamaraiselvan, C.; Thakur, A.K.; Singh, S.P.; Meijler, M.M.; Arnusch, C.J. Silver-Doped Laser-Induced Graphene for Potent Surface Antibacterial Activity and Anti-Biofilm Action. Chem. Commun. 2019, 55, 6890–6893. [Google Scholar] [CrossRef]
- Rao, C.N.R.; Biswas, K.; Subrahmanyam, K.S.; Govindaraj, A. Graphene, the New Nanocarbon. J. Mater. Chem. 2009, 19, 2457–2469. [Google Scholar] [CrossRef]
- Ustun, O.S.; Boudraa, I.; Aydın, R.; Büyükgüngör, H. Photocatalytic Removal of Pharmaceuticals by Immobilization of TiO2 on Activated Carbon by LC–MS/MS Monitoring. Water Air Soil Pollut. 2022, 233, 111. [Google Scholar] [CrossRef]
- Rzaij, J.; Abass, A.M. Review on: TiO2 Thin Film as a Metal Oxide Gas Sensor. J. Chem. Rev. 2020, 2, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Ijadpanah-Saravy, H.; Safari, M.; Khodadadi-Darban, A.; Rezaei, A. Synthesis of Titanium Dioxide Nanoparticles for Photocatalytic Degradation of Cyanide in Wastewater. Anal. Lett. 2014, 47, 1772–1782. [Google Scholar] [CrossRef]
- Liqiang, J.; Xiaojun, S.; Baifu, X.; Baiqi, W.; Weimin, C.; Honggang, F. The Preparation and Characterization of La Doped TiO2 Nanoparticles and Their Photocatalytic Activity. J. Solid State Chem. 2004, 177, 3375–3382. [Google Scholar] [CrossRef]
- Spurr, R.A.; Myers, H. Quantitative Analysis of Anatase-Rutile Mixtures with an X-ray Diffractometer. Anal. Chem. 1957, 29, 760–762. [Google Scholar] [CrossRef]
- Vásquez, G.C.; Peche-Herrero, M.A.; Maestre, D.; Gianoncelli, A.; Ramírez-Castellanos, J.; Cremades, A.; González-Calbet, J.M.; Piqueras, J. Laser-Induced Anatase-to-Rutile Transition in TiO2 Nanoparticles: Promotion and Inhibition Effects by Fe and Al Doping and Achievement of Micropatterning. J. Phys. Chem. C 2015, 119, 11965–11974. [Google Scholar] [CrossRef]
- Jain, V.; Biesinger, M.C.; Linford, M.R. The Gaussian-Lorentzian Sum, Product, and Convolution (Voigt) Functions in the Context of Peak Fitting X-Ray Photoelectron Spectroscopy (XPS) Narrow Scans. Appl. Surf. Sci. 2018, 447, 548–553. [Google Scholar] [CrossRef]
- Jnido, G.; Ohms, G.; Viöl, W. Deposition of TiO2 Thin Films on Wood Substrate by an Air Atmospheric Pressure Plasma Jet. Coatings 2019, 9, 441. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.; Mauchauffé, R.; You, Y.S.; Moon, S.Y. Insights into the Role of Plasma in Atmospheric Pressure Chemical Vapor Deposition of Titanium Dioxide Thin Films. Sci. Rep. 2018, 8, 16684. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Liu, Q.; Hubert, J.; Huang, W.; Baert, K.; Wallaert, G.; Terryn, H.; Delplancke-Ogletree, M.-P.; Reniers, F. Deposition of Photocatalytic Anatase Titanium Dioxide Films by Atmospheric Dielectric Barrier Discharge. Surf. Coat. Technol. 2017, 310, 173–179. [Google Scholar] [CrossRef]
- Fakhouri, H.; Salem, D.B.; Carton, O.; Pulpytel, J.; Arefi-Khonsari, F. Highly Efficient Photocatalytic TiO2 Coatings Deposited by Open Air Atmospheric Pressure Plasma Jet with Aerosolized TTIP Precursor. J. Phys. D Appl. Phys. 2014, 47, 265301. [Google Scholar] [CrossRef]
- Xie, W.; Li, R.; Xu, Q. Enhanced Photocatalytic Activity of Se-Doped TiO2 under Visible Light Irradiation. Sci. Rep. 2018, 8, 8752. [Google Scholar] [CrossRef] [Green Version]
- Biesinger, M.C.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898. [Google Scholar] [CrossRef]
- Thakur, K.; Kandasubramanian, B. Graphene and Graphene Oxide-Based Composites for Removal of Organic Pollutants: A Review. J. Chem. Eng. Data 2019, 64, 833–867. [Google Scholar] [CrossRef]
- Adeolu, A.T.; Okareh, O.T.; Dada, A.O. Adsorption of Chromium Ion from Industrial Effluent Using Activated Carbon Derived from Plantain (Musa Paradisiaca) Wastes. Am. J. Environ. Prot. 2016, 4, 7–20. [Google Scholar] [CrossRef]
- Wu, S.C.; Yu, L.L.; Xiao, F.F.; You, X.; Yang, C.; Cheng, J.H. Synthesis of Aluminum-Based MOF/Graphite Oxide Composite and Enhanced Removal of Methyl Orange. J. Alloy. Compd. 2017, 724, 625–632. [Google Scholar] [CrossRef]
- Edet, U.A.; Ifelebuegu, A.O. Kinetics, Isotherms, and Thermodynamic Modeling of the Adsorption of Phosphates from Model Wastewater Using Recycled Brick Waste. Processes 2020, 8, 665. [Google Scholar] [CrossRef]
- Darwish, A.A.A.; Rashad, M.; AL-Aoh, H.A. Methyl Orange Adsorption Comparison on Nanoparticles: Isotherm, Kinetics, and Thermodynamic Studies. Dye. Pigment. 2019, 160, 563–571. [Google Scholar] [CrossRef]
- AL-Aoh, H.A.; Yahya, R.; Maah, M.J.; Bin Abas, M.R. Adsorption of Methylene Blue on Activated Carbon Fiber Prepared from Coconut Husk: Isotherm, Kinetics and Thermodynamics Studies. Desalin. Water Treat. 2014, 52, 6720–6732. [Google Scholar] [CrossRef]
- Atun, G.; Hisarli, G.; Sheldrick, W.S.; Muhler, M. Adsorptive Removal of Methylene Blue from Colored Effluents on Fuller’s Earth. J. Colloid Interface Sci. 2003, 261, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Hameed, B.H.; Ahmad, A.A. Batch Adsorption of Methylene Blue from Aqueous Solution by Garlic Peel, an Agricultural Waste Biomass. J. Hazard. Mater. 2009, 164, 870–875. [Google Scholar] [CrossRef] [PubMed]
- Hamdaoui, O. Batch Study of Liquid-Phase Adsorption of Methylene Blue Using Cedar Sawdust and Crushed Brick. J. Hazard. Mater. 2006, 135, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Luttrell, T.; Halpegamage, S.; Tao, J.; Kramer, A.; Sutter, E.; Batzill, M. Why Is Anatase a Better Photocatalyst than Rutile? Model Studies on Epitaxial TiO2 Films. Sci. Rep. 2014, 4, 4043. [Google Scholar] [CrossRef] [Green Version]
- Djebbari, C.; Zouaoui, E.; Ammouchi, N.; Nakib, C.; Zouied, D.; Dob, K. Degradation of Malachite Green Using Heterogeneous Nanophotocatalysts NiO/TiO2 and CuO/TiO2) under Solar and Microwave Irradiation. SN Appl. Sci. 2021, 3, 255. [Google Scholar] [CrossRef]
- Matos, J.; Laine, J.; Herrmann, J.M. Association of Activated Carbons of Different Origins with Titania in the Photocatalytic Purification of Water. Carbon N. Y. 1999, 37, 1870–1872. [Google Scholar] [CrossRef]
- Vikram, K.; Srivastava, R.K.; Singh, A.R.; Ummer, K.; Kumar, S.; Singh, M.P. Facile In-Situ Synthesis of Reduced Graphene Oxide/TiO2 Nanocomposite: A Promising Material for the Degradation of Methyl Orange. Inorg. Nano-Met. Chem. 2022, 53, 167–177. [Google Scholar] [CrossRef]
- Gryparis, C.; Krasoudaki, T.; Maravelaki, P.-N. Self-Cleaning Coatings for the Protection of Cementitious Materials: The Effect of Carbon Dot Content on the Enhancement of Catalytic Activity of TiO2. Coatings 2022, 12, 587. [Google Scholar] [CrossRef]
- Oyewo, O.A.; Ramaila, S.; Mavuru, L.; Onwudiwe, D.C. Enhanced Photocatalytic Degradation of Methyl Orange Using Sn-ZnO/GO Nanocomposite. J. Photochem. Photobiol. 2022, 11, 100131. [Google Scholar] [CrossRef]
- You, J.; Zhang, L.; He, L.; Zhang, B. Photocatalytic Degradation of Methyl Orange on ZnO–TiO2 SO4 2-Heterojunction Composites. Opt. Mater. 2022, 131, 112737. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, M.; Wu, J.; Zheng, X.; Liao, S.; Ou, B.; Tian, L. In Situ Embedment of CoOx on G-C3N4 as Z Scheme Heterojunction for Efficient Photocatalytic Degradation of Methyl Orange and Phenol under Visible Light. J. Alloy. Compd. 2022, 927, 167047. [Google Scholar] [CrossRef]
- Wang, R.; Wang, Y.; Zhang, N.; Lin, S.; He, Y.; Yan, Y.; Hu, K.; Sun, H.; Liu, X. Synergetic Piezo-Photocatalytic Effect in SbSI for Highly Efficient Degradation of Methyl Orange. Ceram. Int. 2022, 48, 31818–31826. [Google Scholar] [CrossRef]
- Jarosiński, Ł.; Pawlak, J.; Al-Ani, S.K.J. Inverse Logarithmic Derivative Method for Determining the Energy Gap and the Type of Electron Transitions as an Alternative to the Tauc Method. Opt. Mater. 2019, 88, 667–673. [Google Scholar] [CrossRef]
- Makuła, P.; Pacia, M.; Macyk, W. How to Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef] [Green Version]
- Barone, P.; Stranges, F.; Barberio, M.; Renzelli, D.; Bonanno, A.; Xu, F. Study of Band Gap of Silver Nanoparticles-Titanium Dioxide Nanocomposites. J. Chem. 2014, 2014, 589707. [Google Scholar] [CrossRef]
- Janczarek, M.; Kowalska, E. On the Origin of Enhanced Photocatalytic Activity of Copper-Modified Titania in the Oxidative Reaction Systems. Catalysts 2017, 7, 317. [Google Scholar] [CrossRef] [Green Version]
Isotherm Model | Equation | Plotting |
---|---|---|
Langmuir | 1/qe vs. 1/Ce | |
Freundlich | ln qe vs. ln Ce | |
Temkin | qe =ln Ce +ln AT | qe vs. ln Ce |
Adsorbate | Concentration | ΔS° | ΔH° | −ΔG° | |||
---|---|---|---|---|---|---|---|
(mg/L) | (KJ/mol.K) | (KJ/mol) | (KJ/mol) | ||||
298 K | 318 K | 333 K | R2 | ||||
5 | 59.931 | 24.789 | 4.382 | 4.997 | 5.930 | 0.865 | |
MO | 20 | 19.932 | 8.122 | 0.176 | 0.703 | 1.620 | 0.964 |
50 | 17.318 | 7.431 | 2.401 | 0.228 | 0.883 | 0.998 | |
80 | 17.067 | 5.618 | 6.700 | 3.236 | 1.120 | 0.985 |
Isotherm Model | Parameters | Temperature (K) | ||
---|---|---|---|---|
298 | 318 | 333 | ||
Langmuir | qmax (mg.g−1) | 85.110 | 92.680 | 108.58 |
KL (L.mg−1) | 0.210 | 0.311 | 0.455 | |
RL | 0.195 | 0.138 | 0.090 | |
R2 | 0.981 | 0.981 | 0.987 | |
Freundlich | Kf | 25.11 | 29.87 | 33.64 |
1/n | 0.26 | 0.25 | 0.31 | |
n | 3.88 | 3.92 | 3.26 | |
R2 | 0.944 | 0.931 | 0.943 | |
Temkin | AT | 44.23 | 75.45 | 12.53 |
B (J.mol−1) | 8.66 | 9.35 | 16.03 | |
b | 286.2 | 264.9 | 154.6 | |
R2 | 0.783 | 0.767 | 0.886 |
Irradiation | Photocatalyst | Overall Removal Efficiency (%) | Reference |
---|---|---|---|
UV-A light | TC0 a, TC62.5 b | 45.5,62.9 | [72] |
Visible light | Sn-ZnO/GO | 87 | [73] |
Visible light | ZnO-TiO2/SO42− | 90 | [74] |
Visible light | CoOx/g-C3N | 92 | [75] |
Visible light | SbSI MRs | 78 | [76] |
UV-A light | LIG/TiO2 | 92.8 | Present study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tesfahunegn, B.A.; Kleinberg, M.N.; Powell, C.D.; Arnusch, C.J. A Laser-Induced Graphene-Titanium(IV) Oxide Composite for Adsorption Enhanced Photodegradation of Methyl Orange. Nanomaterials 2023, 13, 947. https://doi.org/10.3390/nano13050947
Tesfahunegn BA, Kleinberg MN, Powell CD, Arnusch CJ. A Laser-Induced Graphene-Titanium(IV) Oxide Composite for Adsorption Enhanced Photodegradation of Methyl Orange. Nanomaterials. 2023; 13(5):947. https://doi.org/10.3390/nano13050947
Chicago/Turabian StyleTesfahunegn, Brhane A., Maurício Nunes Kleinberg, Camilah D. Powell, and Christopher J. Arnusch. 2023. "A Laser-Induced Graphene-Titanium(IV) Oxide Composite for Adsorption Enhanced Photodegradation of Methyl Orange" Nanomaterials 13, no. 5: 947. https://doi.org/10.3390/nano13050947
APA StyleTesfahunegn, B. A., Kleinberg, M. N., Powell, C. D., & Arnusch, C. J. (2023). A Laser-Induced Graphene-Titanium(IV) Oxide Composite for Adsorption Enhanced Photodegradation of Methyl Orange. Nanomaterials, 13(5), 947. https://doi.org/10.3390/nano13050947