Dynamics of Pd Subsurface Hydride Formation and Their Impact on the Selectivity Control for Selective Butadiene Hydrogenation Reaction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Materials
2.2. Characterization of Samples by TEM
2.3. Catalytic Tests
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boudart, M. Advances in Catalysis; Herman, P., Weisz, P.B., Eley, D.D., Eds.; Catalysis by Supported Metals; Academic Press: Cambridge, MA, USA, 1969; Volume 20, pp. 153–166. [Google Scholar]
- Kyriakou, G.; Boucher, M.B.; Jewell, A.D.; Lewis, E.A.; Lawton, T.J.; Baber, A.E.; Tierney, H.L.; Flytzani-Stephanopoulos, M.; Sykes, E.C. Isolated metal atom geometries as a strategy for selective heter-ogeneous hydrogenations. Science 2012, 335, 1209–1212. [Google Scholar] [CrossRef]
- Uzio, D.; Berhault, G. Factors Governing the Catalytic Reactivity of Metallic Nanoparticles. Catal. Rev. 2010, 52, 106–131. [Google Scholar] [CrossRef]
- Bielawa, H.; Hinrichsen, O.; Birkner, A.; Muhler, M. The Ammonia-Synthesis Catalyst of the Next Generation: Barium-Promoted Oxide-Supported Ruthenium. Angew. Chem. Int. Ed. 2001, 6, 1061–1063. [Google Scholar] [CrossRef]
- Somorjai, G.A. The structure sensitivity and insensitivity of catalytic reactions in light of the adsorbate induced dynamic restructuring of surfaces. Catal. Lett. 1990, 7, 169. [Google Scholar] [CrossRef]
- Li, Y.; Yan, K.; Cao, Y.; Ge, X.; Zhou, X.; Yuan, W.; Chen, D.; Duan, X. Mechanistic and Atomic-Level Insights into Semihydrogenation Catalysis to Light Olefins. ACS Catal. 2022, 12, 12138–12161. [Google Scholar] [CrossRef]
- Bernsmeier, D.; Chuenchom, L.; Paul, B.; Rümmler, S.; Smarsly, B.; Kraehnert, R. Highly Active Binder-Free Catalytic Coatings for Heterogeneous Catalysis and Electrocatalysis: Pd on Mesoporous Carbon and Its Application in Butadiene Hydrogenation and Hydrogen Evolution. ACS Catal. 2016, 6, 8255–8263. [Google Scholar] [CrossRef]
- Chesnokov, V.V.; Podyacheva, O.Y.; Richards, R.M. Influence of carbon nanomaterials on the properties of Pd/C catalysts in selective hydrogenation of acetylene. Mater. Res. Bull. 2017, 88, 78–84. [Google Scholar] [CrossRef]
- Silvestre-Albero, J.; Rupprecter, G.; Freund, H.-J. From Pd nanoparticles to single crystals: 1,3-butadiene hydrogenation on well-defined model catalysts. Chem. Comm. 2006, 80–82. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, A.; Reading, M.; Grillet, Y.; Rouquerol, J.; Boitiaux, J.P.; Cosyns, J. Influence of dispersion on the energies of adsorption: H2, CO, propylene and propyne on supported Pd or Pt. Z. Phys. D At. Mol. Clusters 1989, 12, 583–586. [Google Scholar] [CrossRef]
- Teschner, D.; Revay, Z.; Borsodi, J.; Havecker, M.; Knop-Gericke, A.; Schlögl, R.; Milroy, D.; Jackson, S.D.; Torres, D.; Sautet, P. Understanding Palladium Hydrogenation Catalysts: When the Nature of the Reactive Molecule Controls the Nature of the Catalyst Active Phase. Angew. Chem. Int. Ed. 2008, 47, 9274–9278. [Google Scholar] [CrossRef] [Green Version]
- Katano, S.; Kato, H.S.; Kawai, M.; Domen, K. Self-Activated Catalyst Layer for Partial Hydrogenation of 1,3-Butadiene on a Hydrogen-Precovered Pd(110) Surface. J. Phys. Chem. C 2009, 113, 14872–14878. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, W.; Wang, Y.; Wang, B.; Fan, M.; Zhang, R. Enhancing Catalytic performance through Subsurface Chemistry: The Case of C2H2 Semihydrogenation over Pd Catalysts. ACS Appl. Mater. Interfaces 2022, 14, 56743–56757. [Google Scholar] [CrossRef]
- Morales, M.V.; Asedegbega-Nieto, E.; Bachiller-Baeza, B.; Guerrero-Ruiz, A. Bioethanol dehydrogenation over copper supported on functionalized graphene materials and a high surface area graphite. Carbon 2016, 102, 426–436. [Google Scholar] [CrossRef]
- Castillejos, E.; Bachiller-Baeza, B.; Asedegbega-Nieto EGuerrero-Ruiz, A.; Rodriguez-Ramos, I. Selective 1,3-Butadiene hydrogenation by gold nanoparticles deposited&precipitated onto nano-carbon materials. RSC Adv. 2015, 5, 81583–81598. [Google Scholar]
- Kumara, L.S.R.; Sakata, O.; Kobayashi, H.; Song, C.; Kohara, S.; Ina, T.; Yoshimoto, T.; Yoshioka, S.; Matsumura, S.; Kitagawa, H. Hydrogen storage and stability properties of Pd–Pt solid-solution nanoparticles revealed via atomic and electronic structure. Sci. Rep. 2017, 7, 14606. [Google Scholar] [CrossRef] [Green Version]
- Gross, O.; Neuber, N.; Kuball, A.; Bochtler, B.; Hechler, S.; Frey, M.; Busch, R. Signatures of structural differences in Pt–P- and Pd–P-based bulk glass-forming liquids. Commun. Phys. 2019, 2, 83. [Google Scholar] [CrossRef] [Green Version]
- Langhammer, C.; Zhdanov, V.P.; Zoric, I.; Kasemo, B. Size-dependent hysteresis in the formation and decomposition of hydride in metal nanoparticles. Chem. Phys. Lett. 2010, 488, 62–66. [Google Scholar] [CrossRef]
- Suzana, A.F.; Wu, L.; Assefa, T.A.; Williams, B.P.; Harder, R.; Cha, W.; Kuo, C.-H.; Tsung, C.-K.; Robinson, I.K. Structure of a seeded palladium nanoparticle and its dynamics during the hydride phase transformation. Commun. Chem. 2021, 4, 64. [Google Scholar] [CrossRef]
- Bauer, M.; Schoch, R.; Shao, L.; Zhang, B.; Knop-Gericke, A.; Willinger, M.; Schlögl, R.; Teschner, D. Structure−Activity Studies on Highly Active Palladium Hydrogenation Catalysts by X-ray Absorption Spectroscopy. J. Phys. Chem. C 2012, 116, 22375–22385. [Google Scholar] [CrossRef]
- Bugaev, A.L.; Guda, A.A.; Lazzarini, A.; Lomachenko, K.A.; Groppo, E.; Pellegrini, R.; Piovano, A.; Emerich, H.; Soldatov, A.V.; Bugaev, L.A.; et al. In situ formation of hydrides and carbides in palladium catalyst:When XANES is better than EXAFS and XRD. Catal. Today 2017, 283, 119–126. [Google Scholar] [CrossRef]
- Bugaev, A.L.; Usoltsev, O.A.; Lazzarini, A.; Lomachenko, K.A.; Guda, A.A.; Pellegrini, R.; Carosso, M.; Vitillo, J.G.; Groppo, E.; van Bokhoven, J.A.; et al. Time-resolved operando studies of carbon supported Pd nanoparticles under hydrogenation reactions by X-ray diffraction and absorption. Faraday Discuss. 2018, 208, 187–205. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Fu, F.; McCue, A.; Jones, W.; Rao, D.; Feng, J.; He, Y.; Li, D. Adsorbate-Induced Structural Evolution of Pd Catalyst for Selective Hydrogenation of Acetylene. ACS Catal. 2020, 10, 15048–15059. [Google Scholar] [CrossRef]
- Vogel, W.; He, W.; Huang, Q.-H.; Zou, Z.; Zhang, X.-G. Palladium nanoparticles “breathe” hydrogen; a surgical view with X-ray diffraction. Int. J. Hydrogen Energy 2010, 35, 8609–8620. [Google Scholar] [CrossRef]
- Khanuja, M.; Mehta, B.R.; Agar, P.; Kulriya, P.K.; Avasthi, D.K. Hydrogen induced lattice expansion and crystallinity degradation in palladium nanoparticles: Effect of hydrogen concentration, pressure, and temperature. J. Appl. Phys. 2009, 106, 093515. [Google Scholar] [CrossRef] [Green Version]
- Tew, M.W.; Miller, J.T.; van Bokhoven, J.A. Particle Size Effect of Hydride Formation and Surface Hydrogen Adsorption of Nanosized Palladium Catalysts: L3 Edge vs K Edge X-ray Absorption Spectroscopy. J. Phys. Chem. C 2009, 113, 15140–15147. [Google Scholar] [CrossRef]
- Zhang, P.; Sham, T.K. X-Ray Studies of the Structure and Electronic Behavior of Alkanethiolate-Capped Gold Nanoparticles: The Interplay of Size and Surface Effects. Phys. Rev. Lett. 2003, 90, 245502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borodziński, A.; Bond, G.C. Selective Hydrogenation of Ethyne in Ethene-Rich Streams on Palladium Catalysts, Part 2: Steady-State Kinetics and Effects of Palladium Particle Size, Carbon Monoxide, and Promoters. Catal. Rev. 2008, 50, 379–469. [Google Scholar] [CrossRef]
- Woldt, E. The relationship between isothermal and non-isothermal description of Johnson-Mehl-Avrami-Kolmogorov kinetics. J. Phys. Chem. Solids 1992, 53, 521–527. [Google Scholar] [CrossRef]
- Li, H.; Gai, K.; He, L.; Zhang, C.; Cui, H.; Li, M. Non-isothermal phase-transformation kinetics model for evaluating the austenization of 55CrMo steel based on Johnson-Mehl-Avrami equation. Mater. Des. 2016, 92, 731–741. [Google Scholar] [CrossRef]
- Sinha, I.; Mandal, R.K. Avrami exponent under transient and heterogeneous nucleation transformation conditions. J. Non-Cryst. Solids 2011, 357, 919–925. [Google Scholar] [CrossRef] [Green Version]
- Bruna, P.; Crespo, D.; Gonzalez-Cinca, R.; Pineda, E. On the validity of Avrami formalism in primary crystallization. J. Appl. Phys. 2006, 100, 054907. [Google Scholar] [CrossRef] [Green Version]
Samples | Particle Size nm (TEM) | Conversion (%) | Selectivity to Butenes (%) |
---|---|---|---|
1PdG | 3.2 | 89 | 27 |
2PdG | 4.9 | 89 | 27 |
1PdGONE | 8.9 | 15 | 88 |
1PdGOE | 9.7 | 8.9 | 92 |
Samples | Particle Size nm (TEM) | Ln k | n |
---|---|---|---|
2PdG | 4.9 | −25.2 | 8.6 |
1PdGONE | 8.9 | −3.5 | 1.9 |
1PdGOE | 9.7 | −2.7 | 1.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asedegbega-Nieto, E.; Iglesias-Juez, A.; Di Michiel, M.; Fernandez-Garcia, M.; Rodriguez-Ramos, I.; Guerrero-Ruiz, A. Dynamics of Pd Subsurface Hydride Formation and Their Impact on the Selectivity Control for Selective Butadiene Hydrogenation Reaction. Nanomaterials 2023, 13, 1099. https://doi.org/10.3390/nano13061099
Asedegbega-Nieto E, Iglesias-Juez A, Di Michiel M, Fernandez-Garcia M, Rodriguez-Ramos I, Guerrero-Ruiz A. Dynamics of Pd Subsurface Hydride Formation and Their Impact on the Selectivity Control for Selective Butadiene Hydrogenation Reaction. Nanomaterials. 2023; 13(6):1099. https://doi.org/10.3390/nano13061099
Chicago/Turabian StyleAsedegbega-Nieto, Esther, Ana Iglesias-Juez, Marco Di Michiel, Marcos Fernandez-Garcia, Inmaculada Rodriguez-Ramos, and Antonio Guerrero-Ruiz. 2023. "Dynamics of Pd Subsurface Hydride Formation and Their Impact on the Selectivity Control for Selective Butadiene Hydrogenation Reaction" Nanomaterials 13, no. 6: 1099. https://doi.org/10.3390/nano13061099
APA StyleAsedegbega-Nieto, E., Iglesias-Juez, A., Di Michiel, M., Fernandez-Garcia, M., Rodriguez-Ramos, I., & Guerrero-Ruiz, A. (2023). Dynamics of Pd Subsurface Hydride Formation and Their Impact on the Selectivity Control for Selective Butadiene Hydrogenation Reaction. Nanomaterials, 13(6), 1099. https://doi.org/10.3390/nano13061099