3D and Inkjet Printing by Colored Mie-Resonant Silicon Nanoparticles Produced by Laser Ablation in Liquid
Abstract
:1. Introduction
2. Results and Discussion
2.1. Large-Scale Laser Ablation Synthesis
2.2. Size Separation Technique
2.3. Optical Characterization and Modeling
2.4. Preparation of Inks and 3D Printing
3. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kristensen, A.; Yang, J.K.; Bozhevolnyi, S.I.; Link, S.; Nordlander, P.; Halas, N.J.; Mortensen, N.A. Plasmonic colour generation. Nat. Rev. Mater. 2016, 2, 16088. [Google Scholar] [CrossRef]
- Shao, L.; Zhuo, X.; Wang, J. Advanced plasmonic materials for dynamic color display. Adv. Mater. 2018, 30, 1704338. [Google Scholar] [CrossRef]
- Flauraud, V.; Reyes, M.; Paniagua-Domínguez, R.; Kuznetsov, A.I.; Brugger, J. Silicon nanostructures for bright field full color prints. ACS Photonics 2017, 4, 1913–1919. [Google Scholar] [CrossRef]
- Krasnok, A.; Makarov, S.; Petrov, M.; Savelev, R.; Belov, P.; Kivshar, Y. Towards all-dielectric metamaterials and nanophotonics. In Metamaterials X; SPIE: Bellingham, WA, USA, 2015; Volume 9502, p. 950203. [Google Scholar]
- Evlyukhin, A.B.; Novikov, S.M.; Zywietz, U.; Eriksen, R.L.; Reinhardt, C.; Bozhevolnyi, S.I.; Chichkov, B.N. Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano Lett. 2012, 12, 3749–3755. [Google Scholar] [CrossRef]
- Kuznetsov, A.I.; Miroshnichenko, A.E.; Brongersma, M.L.; Kivshar, Y.S.; Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 2016, 354, aag2472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zywietz, U.; Evlyukhin, A.B.; Reinhardt, C.; Chichkov, B.N. Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses. Nat. Commun. 2014, 5, 3402. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.; Ho, J.; Yu, Y.F.; Fu, Y.H.; Paniagua-Dominguez, R.; Wang, S.; Kuznetsov, A.I.; Yang, J.K.W. Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space. Nano Lett. 2017, 17, 7620–7628. [Google Scholar] [CrossRef]
- Sugimoto, H.; Okazaki, T.; Fujii, M. Mie resonator color inks of monodispersed and perfectly spherical crystalline silicon nanoparticles. Adv. Opt. Mater. 2020, 8, 2000033. [Google Scholar] [CrossRef] [Green Version]
- Okazaki, T.; Sugimoto, H.; Hinamoto, T.; Fujii, M. Color toning of Mie resonant silicon nanoparticle color inks. ACS Appl. Mater. Interfaces 2021, 13, 13613–13619. [Google Scholar] [CrossRef]
- Dmitriev, P.A.; Makarov, S.V.; Milichko, V.A.; Mukhin, I.S.; Gudovskikh, A.S.; Sitnikova, A.A.; Samusev, A.K.; Krasnok, A.E.; Belov, P.A. Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonics. Nanoscale 2016, 8, 5043–5048. [Google Scholar] [CrossRef] [Green Version]
- Makarov, S.V.; Petrov, M.I.; Zywietz, U.; Milichko, V.; Zuev, D.; Lopanitsyna, N.; Kuksin, A.; Mukhin, I.; Zograf, G.; Ubyivovk, E.; et al. Efficient second-harmonic generation in nanocrystalline silicon nanoparticles. Nano Lett. 2017, 17, 3047–3053. [Google Scholar] [CrossRef]
- Dmitriev, P.A.; Baranov, D.G.; Milichko, V.A.; Makarov, S.V.; Mukhin, I.S.; Samusev, A.K.; Krasnok, A.E.; Belov, P.A.; Kivshar, Y.S. Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response. Nanoscale 2016, 8, 9721–9726. [Google Scholar] [CrossRef] [Green Version]
- Zograf, G.P.; Petrov, M.I.; Zuev, D.A.; Dmitriev, P.A.; Milichko, V.A.; Makarov, S.V.; Belov, P.A. Resonant nonplasmonic nanoparticles for efficient temperature-feedback optical heating. Nano Lett. 2017, 17, 2945–2952. [Google Scholar] [CrossRef]
- Kuznetsov, A.I.; Miroshnichenko, A.E.; Fu, Y.H.; Zhang, J.; Luk’Yanchuk, B. Magnetic light. Sci. Rep. 2012, 2, 492. [Google Scholar] [CrossRef] [Green Version]
- Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Der Phys. 1908, 330, 377–445. [Google Scholar] [CrossRef]
- Palik, E.D. (Ed.) Handbook of Optical Constants of Solids; Academic Press: Cambridge, MA, USA, 1998; Volume 3. [Google Scholar]
- Sandzhieva, M.; Khmelevskaia, D.; Tatarinov, D.; Logunov, L.; Samusev, K.; Kuchmizhak, A.; Makarov, S.V. Organic Solar Cells Improved by Optically Resonant Silicon Nanoparticles. Nanomaterials 2022, 12, 3916. [Google Scholar] [CrossRef]
- Furasova, A.; Voroshilov, P.; Sapori, D.; Ladutenko, K.; Barettin, D.; Zakhidov, A.; Di Carlo, A.; Simovski, C.; Makarov, S. Nanophotonics for perovskite solar cells. Adv. Photonics Res. 2022, 3, 2100326. [Google Scholar] [CrossRef]
- Zhang, D.; Wada, H. Laser ablation in liquids for nanomaterial synthesis and applications. In Handbook of Laser Micro-and Nano-Engineering; Springer Nature: Berlin, Germany, 2020; pp. 1–35. [Google Scholar]
- Chewchinda, P.; Odawara, O.; Wada, H. The effect of energy density on yield of silicon nanoparticles prepared by pulsed laser ablation in liquid. Appl. Phys. A 2014, 117, 131. [Google Scholar] [CrossRef] [Green Version]
- Dittrich, S.; Streubel, R.; McDonnell, C.; Huber, H.P.; Barcikowski, S.; Gökce, B. Comparison of the productivity and ablation efficiency of different laser classes for laser ablation of gold in water and air. Appl. Phys. A 2019, 125, 432. [Google Scholar] [CrossRef]
- Kanitz, A.; Hoppius, J.S.; del Mar Sanz, M.; Maicas, M.; Ostendorf, A.; Gurevich, E.L. Synthesis of magnetic nanoparticles by ultrashort pulsed laser ablation of iron in different liquids. ChemPhysChem 2017, 18, 1155–1164. [Google Scholar] [CrossRef]
- Zhang, D.; Gökce, B.; Sommer, S.; Streubel, R.; Barcikowski, S. Debris-free rear-side picosecond laser ablation of thin germanium wafers in water with ethanol. Appl. Surf. Sci. 2016, 367, 222. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Logunov, L.; Ulesov, A.; Khramenkova, V.; Liu, X.; Kuchmizhak, A.A.; Vinogradov, A.; Makarov, S. 3D and Inkjet Printing by Colored Mie-Resonant Silicon Nanoparticles Produced by Laser Ablation in Liquid. Nanomaterials 2023, 13, 965. https://doi.org/10.3390/nano13060965
Logunov L, Ulesov A, Khramenkova V, Liu X, Kuchmizhak AA, Vinogradov A, Makarov S. 3D and Inkjet Printing by Colored Mie-Resonant Silicon Nanoparticles Produced by Laser Ablation in Liquid. Nanomaterials. 2023; 13(6):965. https://doi.org/10.3390/nano13060965
Chicago/Turabian StyleLogunov, Lev, Aleksandr Ulesov, Vladislava Khramenkova, Xiuzhen Liu, Aleksandr A. Kuchmizhak, Alexander Vinogradov, and Sergey Makarov. 2023. "3D and Inkjet Printing by Colored Mie-Resonant Silicon Nanoparticles Produced by Laser Ablation in Liquid" Nanomaterials 13, no. 6: 965. https://doi.org/10.3390/nano13060965
APA StyleLogunov, L., Ulesov, A., Khramenkova, V., Liu, X., Kuchmizhak, A. A., Vinogradov, A., & Makarov, S. (2023). 3D and Inkjet Printing by Colored Mie-Resonant Silicon Nanoparticles Produced by Laser Ablation in Liquid. Nanomaterials, 13(6), 965. https://doi.org/10.3390/nano13060965