Effect of Pulse Repetition Rate on Ultrafast Laser-Induced Modification of Sodium Germanate Glass
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shimotsuma, Y.; Kazansky, P.G.; Qiu, J.; Hirao, K. Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett. 2003, 91, 247405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canning, J.; Lancry, M.; Cook, K.; Weickman, A.; Brisset, F.; Poumellec, B. Anatomy of a femtosecond laser processed silica waveguide. Opt. Mater. Express 2011, 1, 998–1008. [Google Scholar] [CrossRef]
- Bricchi, E.; Kazansky, P.G. Extraordinary stability of femtosecond direct written structures. Appl. Phys. Lett. 2006, 88, 111119. [Google Scholar] [CrossRef] [Green Version]
- Hnatovsky, C.; Taylor, R.S.; Simova, E.; Rajeev, P.P.; Rayner, D.M.; Bhardwaj, V.R.; Corkum, P.B. Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching. Appl. Phys. A 2006, 84, 47–61. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, X.; Qiu, J. Single femtosecond laser beam induced nanogratings in transparent media—Mechanisms and applications. J. Materiomics 2019, 5, 1–14. [Google Scholar] [CrossRef]
- Rudenko, A.; Colombier, J.P.; Itina, T. From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser. Phys. Rev. B 2016, 93, 075427. [Google Scholar] [CrossRef] [Green Version]
- Rudenko, A.; Colombier, J.-P.; Itina, T.E.; Stoian, R. Genesis of nanogratings in silica bulk via multipulse interplay of ultrafast photo-excitation and hydrodynamics. Adv. Opt. Mater. 2021, 9, 2100973. [Google Scholar] [CrossRef]
- Van Driel, H.M.; Sipe, J.E.; Young, J.F. Laser-Induced Periodic Surface Structure on Solids: A Universal Phenomenon. Phys. Rev. Lett. 1982, 49, 1955. [Google Scholar] [CrossRef]
- Bonse, J.; Kirner, S.V.; Krüger, J. Laser-Induced Periodic Surface Structures (LIPSS). In Handbook of Laser Micro-and Nano-Engineering; Sugioka, K., Ed.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Lancry, M.; Poumellec, B.; Chahid-Erraji, A.; Beresna, M.; Kazansky, P.G. Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses. Opt. Mater. Express 2011, 1, 711–723. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, H.; Dong, G.; Qiu, J. Embedded nanogratings in germanium dioxide glass induced by femtosecond laser direct writing. J. Opt. Soc. Am. B 2014, 31, 860–864. [Google Scholar] [CrossRef]
- Zhang, F.; Cerkauskaite, A.; Drevinskas, R.; Kazansky, P.G.; Qiu, J. Microengineering of optical properties of GeO2 glass by ultrafast laser nanostructuring. Adv. Opt. Mater. 2017, 5, 1700342. [Google Scholar] [CrossRef]
- Richter, S.; Miese, C.; Döring, S.; Zimmermann, F.; Withford, M.J.; Tünnermann, A.; Nolte, S. Laser induced nanogratings beyond fused silica—Periodic nanostructures in borosilicate glasses and ULE™. Opt. Mater. Express 2013, 3, 1161–1166. [Google Scholar] [CrossRef] [Green Version]
- Fedotov, S.S.; Drevinskas, R.; Lotarev, S.V.; Lipatiev, A.S.; Beresna, M.; Čerkauskaitė, A.; Sigaev, V.N.; Kazansky, P.G. Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass. Appl. Phys. Lett. 2016, 108, 071905. [Google Scholar] [CrossRef] [Green Version]
- Xie, Q.; Cavillon, M.; Pugliese, D.; Janner, D.; Poumellec, B.; Lancry, M. On the formation of nanogratings in commercial oxide glasses by femtosecond laser direct writing. Nanomaterials 2022, 12, 2986. [Google Scholar] [CrossRef]
- Fedotov, S.S.; Lipat’ev, A.S.; Lotarev, S.V.; Sigaev, V.N. Local formation of birefringent structures in alkali silicate glass by femtosecond laser beam. Glass Ceram. 2017, 74, 227–229. [Google Scholar] [CrossRef]
- Lotarev, S.; Fedotov, S.; Lipatiev, A.; Presnyakov, M.; Kazansky, P.; Sigaev, V. Light-driven nanoperiodical modulation of alkaline cation distribution inside sodium silicate glass. J. Non-Cryst. Solids 2018, 479, 49–54. [Google Scholar] [CrossRef]
- Zimmermann, F.; Lancry, M.; Plech, A.; Richter, S.; Hari Babu, B.; Poumellec, B.; Tünnermann, A.; Nolte, S. Femtosecond laser written nanostructures in Ge-doped glasses. Opt. Lett. 2016, 41, 1161–1164. [Google Scholar] [CrossRef]
- Lancry, M.; Canning, J.; Cook, K.; Heili, M.; Neuville, D.R.; Poumellec, B. Nanoscale femtosecond laser milling and control of nanoporosity in the normal and anomalous regimes of GeO2-SiO2 glasses. Opt. Mater. Express 2016, 6, 321–330. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, S.; Cicconi, M.R.; Tsuji, Y.; Shimizu, M.; Shimotsuma, Y.; Miura, K.; Peng, G.-D.; Neuville, D.R.; Poumellec, B.; et al. Femtosecond laser direct writing in SiO2-Al2O3 binary glasses and thermal stability of Type II permanent modifications. J. Am. Ceram. Soc. 2020, 103, 4286–4294. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Dai, Y.; Wang, Z.; Qiu, J. Effect of sodium oxide content on the formation of nanogratings in germanate glass by a femtosecond laser. Opt. Express 2018, 26, 12761–12768. [Google Scholar] [CrossRef]
- Lotarev, S.V.; Fedotov, S.S.; Kurina, A.I.; Lipatiev, A.S.; Sigaev, V.N. Ultrafast laser-induced nanogratings in sodium germanate glasses. Opt. Lett. 2019, 44, 1564–1567. [Google Scholar] [CrossRef]
- Lotarev, S.V.; Lipat’iev, A.S.; Fedotov, S.S.; Mikhailov, A.A.; Sigaev, V.N. Laser writing of polarization-sensitive birefringence in sodium-borosilicate glasses. Glass Ceram. 2019, 76, 85–88. [Google Scholar] [CrossRef]
- Fedotov, S.S.; Lipatiev, A.S.; Lipateva, T.O.; Lotarev, S.V.; Mel’nikov, E.; Sigaev, V.N. Femtosecond laser-induced birefringent microdomains in sodium-borate glass for highly secure data storage. J. Am. Ceram. Soc. 2021, 104, 4297–4303. [Google Scholar] [CrossRef]
- Fedotov, S.S.; Lipat’ev, A.S.; Lipat’eva, T.O.; Lotarev, S.V.; Prikhach, N.K.; Sigaev, V.N. Polarization-dependent birefringence in sodium aluminoborate glasses. Glass Ceram. 2022, 79, 85–87. [Google Scholar] [CrossRef]
- Mori, S.; Kurita, T.; Shimotsuma, Y.; Sakakura, M.; Kiyotaka, M. Nanogratings embedded in Al2O3-Dy2O3 glass by femtosecond laser irradiation. J. Laser Micro/Nanoeng. 2016, 11, 87–90. [Google Scholar] [CrossRef] [Green Version]
- Shimotsuma, Y.; Mori, S.; Nakanishii, Y.; Kim, E.; Sakakura, M.; Miura, K. Self-assembled glass/crystal periodic nanostructure in Al2O3-Dy2O3 binary glass. Appl. Phys. A 2018, 124, 82. [Google Scholar] [CrossRef]
- Zhang, B.; Tan, D.; Liu, X.; Tong, L.; Kazansky, P.G.; Qiu, J. Self-organized periodic crystallization in unconventional glass created by an ultrafast laser for optical attenuation in the broadband near-infrared region. Adv. Opt. Mater. 2019, 7, 1900593. [Google Scholar] [CrossRef]
- Cao, J.; Mazerolles, L.; Lancry, M.; Solas, D.; Brisset, F.; Poumellec, B. Form birefringence induced in multicomponent glass by femtosecond laser direct writing. Opt. Lett. 2016, 41, 2739–2742. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Poumellec, B.; Mazerolles, L.; Brisset, F.; Helbert, A.; Surble, S.; He, X.; Lancry, M. Nanoscale phase separation in lithium niobium silicate glass by femtosecond laser irradiation. J. Am. Ceram. Soc. 2017, 100, 115–124. [Google Scholar] [CrossRef]
- Muzi, E.; Cavillon, M.; Lancry, M.; Brisset, F.; Sapaly, B.; Janner, D.; Poumellec, B. Polarization-oriented LiNbO3 nanocrystals by femtosecond laser irradiation in LiO2–Nb2O5–SiO2–B2O3 glasses. Opt. Mater. Express 2021, 11, 1313–1320. [Google Scholar] [CrossRef]
- Zhang, F.; Nie, Z.; Huang, H.; Ma, L.; Tang, H.; Hao, M.; Qiu, J. Self-assembled three-dimensional periodic micro-nano structures in bulk quartz crystal induced by femtosecond laser pulses. Opt. Express 2019, 27, 6442–6450. [Google Scholar] [CrossRef]
- Zhai, Q.; Ma, H.; Lin, X.; Li, Y.; Yin, W.; Tang, X.; Dai, Y. Evolution of self-organized nanograting from the pre-induced nanocrack-assisted plasma–laser coupling in sapphire. Appl. Phys. B 2021, 127, 74. [Google Scholar] [CrossRef]
- Lipateva, T.O.; Lipatiev, A.S.; Karateev, I.V.; Okhrimchuk, A.G.; Fedotov, S.S.; Lotarev, S.V.; Alagashev, G.K.; Sigaev, V.N. Direct laser writing in YAG single crystal: Evolution from amorphization to nanograting formation and phase transformation. J. Alloys Compounds 2023, 942, 169081. [Google Scholar] [CrossRef]
- Stone, A.; Sakakura, M.; Shimotsuma, Y.; Miura, K.; Hirao, K.; Dierolf, V.; Jain, H. Femtosecond laser-writing of 3D crystal architecture in glass: Growth dynamics and morphological control. Mater. Des. 2018, 146, 228–238. [Google Scholar] [CrossRef]
- Lipateva, T.O.; Lotarev, S.V.; Lipatiev, A.S.; Kazansky, P.G.; Sigaev, V.N. Formation of crystalline dots and lines in lanthanum borogermanate glass by the low pulse repetition rate femtosecond laser. SPIE Proc. 2015, 9450, 945018. [Google Scholar] [CrossRef]
- Lancry, M.; Zimmerman, F.; Desmarchelier, R.; Tian, J.; Brisset, F.; Nolte, S.; Poumellec, B. Nanogratings formation in multicomponent silicate glasses. Appl. Phys. B 2016, 122, 66. [Google Scholar] [CrossRef]
- Richter, S.; Heinrich, M.; Döring, S.; Tünnermann, A.; Nolte, S. Formation of femtosecond laser-induced nanogratings at high repetition rates. Appl. Phys. A 2011, 104, 503–507. [Google Scholar] [CrossRef]
- Shimizu, M. Soret effect in binary glass-forming oxide melts: Theory and its verification. J. Ceram. Soc. Jpn. 2019, 127, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Sakakura, M.; Liu, Y.; Qiu, J.; Shimotsuma, Y.; Hirao, K.; Miura, K. Modification of long range order in germanate glass by ultra fast laser. Chem. Phys. Lett. 2011, 511, 266–269. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lotarev, S.V.; Fedotov, S.S.; Pomigueva, A.I.; Lipatiev, A.S.; Sigaev, V.N. Effect of Pulse Repetition Rate on Ultrafast Laser-Induced Modification of Sodium Germanate Glass. Nanomaterials 2023, 13, 1208. https://doi.org/10.3390/nano13071208
Lotarev SV, Fedotov SS, Pomigueva AI, Lipatiev AS, Sigaev VN. Effect of Pulse Repetition Rate on Ultrafast Laser-Induced Modification of Sodium Germanate Glass. Nanomaterials. 2023; 13(7):1208. https://doi.org/10.3390/nano13071208
Chicago/Turabian StyleLotarev, Sergey V., Sergey S. Fedotov, Alyona I. Pomigueva, Alexey S. Lipatiev, and Vladimir N. Sigaev. 2023. "Effect of Pulse Repetition Rate on Ultrafast Laser-Induced Modification of Sodium Germanate Glass" Nanomaterials 13, no. 7: 1208. https://doi.org/10.3390/nano13071208
APA StyleLotarev, S. V., Fedotov, S. S., Pomigueva, A. I., Lipatiev, A. S., & Sigaev, V. N. (2023). Effect of Pulse Repetition Rate on Ultrafast Laser-Induced Modification of Sodium Germanate Glass. Nanomaterials, 13(7), 1208. https://doi.org/10.3390/nano13071208