Unlocking the Power of Artificial Intelligence: Accurate Zeta Potential Prediction Using Machine Learning
Abstract
:1. Introduction
2. Research Methodology
2.1. Data Collection
2.2. Data Analysis Techniques
2.2.1. Multiple Linear Regression (MLR)
2.2.2. Support Vector Machine (SVM) Model
2.2.3. Artificial Neural Network (ANN) Model
3. Results and Discussion
3.1. The MLR Results
3.2. The SVM Results
Zeta Potential Prediction Using SVM Model
3.3. The ANN Results
Zeta Potential Prediction Using ANN Model
3.4. Comparative Analysis of ANNs and SVM
4. Conclusions
- The correlation coefficient for the developed MLR model was found to be 0.68, possibly due to the model’s consideration of seven predictors and the intricate relationship between these predictors and the response variable. This suggests that the model’s ability to predict zeta potential is limited due to the nonlinearity of data.
- The SVM model shows a better correlation between predicted and experimental zeta potential compared to the MLR model, with an excellent correlation coefficient of 0.997 for the training set. This is because the SVM model can capture the nonlinearity of the relationship between predictors and response variables. However, it failed to provide acceptable results for the test data and predictions due to the complexity of the system with several variables.
- Compared to the MLR and SVM models, the ANN model presents the strongest and most significant correlation between predicted and experimental zeta potential for both training and test sets, with correlation coefficients of 0.982 and 0.923, respectively, indicating that the model has a high degree of accuracy. Additionally, the ANN model was able to accurately predict zeta potentials when specific measurement conditions were used as inputs, which were obtained from the literature. The predicted zeta potential closely matched the actual values with correlation coefficients of more than 97%.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
r | correlation coefficient |
xi | values of the x-variable in a sample |
mean of the values of the x-variable | |
yi | values of the y-variable in a sample |
mean of the values of the y-variable | |
F(ka) | Debye function |
UE | electrophoretic mobility |
η | viscosity of the medium |
ε | dielectric constant |
References
- Samuel, M.S.; Ravikumar, M.; John, J.A.; Selvarajan, E.; Patel, H.; Chander, P.S.; Soundarya, J.; Vuppala, S.; Balaji, R.; Chandrasekar, N. A Review on Green Synthesis of Nanoparticles and Their Diverse Biomedical and Environmental Applications. Catalysts 2022, 12, 459. [Google Scholar] [CrossRef]
- Ahmad, F.; Salem-Bekhit, M.M.; Khan, F.; Alshehri, S.; Khan, A.; Ghoneim, M.M.; Wu, H.-F.; Taha, E.I.; Elbagory, I. Unique Properties of Surface-Functionalized Nanoparticles for Bio-Application: Functionalization Mechanisms and Importance in Application. Nanomaterials 2022, 12, 1333. [Google Scholar] [CrossRef]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering Precision Nanoparticles for Drug Delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef]
- Riley, R.S.; Day, E.S. Gold Nanoparticle-mediated Photothermal Therapy: Applications and Opportunities for Multimodal Cancer Treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017, 9, e1449. [Google Scholar] [CrossRef] [PubMed]
- Garino, N.; Limongi, T.; Dumontel, B.; Canta, M.; Racca, L.; Laurenti, M.; Castellino, M.; Casu, A.; Falqui, A.; Cauda, V. A Microwave-Assisted Synthesis of Zinc Oxide Nanocrystals Finely Tuned for Biological Applications. Nanomaterials 2019, 9, 212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muneer, R.; Hashmet, M.R.; Pourafshary, P. Application of DLVO Modeling to Study the Effect of Silica Nanofluid to Reduce Critical Salt Concentration in Sandstones. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1186, 12001. [Google Scholar] [CrossRef]
- Muneer, R.; Hashmet, M.R.; Pourafshary, P. Prediction of Critical pH for Fines Migration Pre-and Post-Nanofluid Treatment in Sandstone Reservoirs Using the DLVO Modelling. In Proceedings of 8th World Congress on Mechanical, Chemical and Material Engineering (MCM’22), Prague, Czech Republic, 31 July–2 August 2022. [Google Scholar]
- Muneer, R.; Pourafshary, P.; Hashmet, M.R. Application of DLVO Modeling to Predict Critical PH for Fines Migration Pre-and Post-SiO2 and MgO Nanofluid Treatments in Sandstones. J. Fluid Flow Heat Mass Transf. 2022, 9, 106. [Google Scholar] [CrossRef]
- Muneer, R.; Rehan Hashmet, M.; Pourafshary, P. Fine Migration Control in Sandstones: Surface Force Analysis and Application of DLVO Theory. ACS Omega 2020, 5, 31624–31639. [Google Scholar] [CrossRef]
- Muneer, R.; Hashmet, M.R.; Pourafshary, P. DLVO Modeling to Predict Critical Salt Concentration to Initiate Fines Migration Pre-and Post-Nanofluid Treatment in Sandstones. SPE J. 2022, 27, 1915–1929. [Google Scholar] [CrossRef]
- Ulasbek, K.; Hashmet, M.R.; Pourafshary, P.; Muneer, R. Laboratory Investigation of Nanofluid-Assisted Polymer Flooding in Carbonate Reservoirs. Nanomaterials 2022, 12, 4258. [Google Scholar] [CrossRef]
- Issakhov, M.; Shakeel, M.; Pourafshary, P.; Aidarova, S.; Sharipova, A. Hybrid Surfactant-Nanoparticles Assisted CO2 Foam Flooding for Improved Foam Stability: A Review of Principles and Applications. Pet. Res. 2021, 7, 186–203. [Google Scholar] [CrossRef]
- Zhangaliyev, M.M.; Hashmet, M.R.; Pourafshary, P. Laboratory Investigation of Hybrid Nano-Assisted-Polymer Method for EOR Applications in Carbonate Reservoirs. In Offshore Technology Conference Asia; OnePetro: Richardson, TX, USA, 2022. [Google Scholar]
- Hasannejad, R.; Pourafshary, P.; Vatani, A.; Sameni, A. Application of Silica Nanofluid to Control Initiation of Fines Migration. Pet. Explor. Dev. 2017, 44, 850–859. [Google Scholar] [CrossRef]
- Ogolo, N.A.; Olafuyi, O.A.; Onyekonwu, M.O. Enhanced Oil Recovery Using Nanoparticles. In Proceedings of the SPE Saudi Arabia Section Technical Symposium and Exhibition; OnePetro: Richardson, TX, USA, 2012. [Google Scholar]
- Julien, C.M.; Mauger, A. Nanostructured MnO2 as Electrode Materials for Energy Storage. Nanomaterials 2017, 7, 396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasquini, L. Nanostructured Materials for Energy Storage and Conversion. Nanomaterials 2022, 12, 1583. [Google Scholar] [CrossRef]
- Ansari, S.A. Graphene Quantum Dots: Novel Properties and Their Applications for Energy Storage Devices. Nanomaterials 2022, 12, 3814. [Google Scholar] [CrossRef]
- Kiani, M.S.; Sadirkhanov, Z.T.; Kakimov, A.G.; Parkhomenko, H.P.; Ng, A.; Jumabekov, A.N. Solution-Processed SnO2 Quantum Dots for the Electron Transport Layer of Flexible and Printed Perovskite Solar Cells. Nanomaterials 2022, 12, 2615. [Google Scholar] [CrossRef]
- Gulzar, A.B.M.; Mazumder, P.B. Use of Nanoparticles for Environmental Remediation. In Handbook of Research on Green Synthesis and Applications of Nanomaterials; IGI Global: Hershey, PA, USA, 2022; pp. 223–246. [Google Scholar]
- Rafeeq, H.; Hussain, A.; Ambreen, A.; Waqas, M.; Bilal, M.; Iqbal, H.M.N. Functionalized Nanoparticles and Their Environmental Remediation Potential: A Review. J. Nanostructure Chem. 2022, 12, 1007–1031. [Google Scholar] [CrossRef]
- Gu, M.; Zhang, Q.; Lamon, S. Nanomaterials for Optical Data Storage. Nat. Rev. Mater. 2016, 1, 16070. [Google Scholar] [CrossRef]
- Pandey, P. Role of Nanotechnology in Electronics: A Review of Recent Developments and Patents. Recent Pat. Nanotechnol. 2022, 16, 45–66. [Google Scholar]
- Bhanvase, B.A.; Barai, D. Nanofluids for Heat and Mass Transfer: Fundamentals, Sustainable Manufacturing and Applications; Academic Press: Cambridge, MA, USA, 2021; ISBN 0128219475. [Google Scholar]
- Bindu, M.V.; Herbert, G.M.J. Experimental Investigation of Stability, Optical Property and Thermal Conductivity of Water Based MWCNT-Al2O3-ZnO Mono, Binary and Ternary Nanofluid. Synth. Met. 2022, 287, 117058. [Google Scholar] [CrossRef]
- Sun, C.; Qin, C.; Zhai, H.; Zhang, B.; Wu, X. Optical Properties of Plasma Dimer Nanoparticles for Solar Energy Absorption. Nanomaterials 2021, 11, 2722. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Y.; Chen, G.; Gai, Z. Application of Nanoparticles in Enhanced Oil Recovery: A Critical Review of Recent Progress. Energies 2017, 10, 345. [Google Scholar] [CrossRef] [Green Version]
- ShamsiJazeyi, H.; Miller, C.A.; Wong, M.S.; Tour, J.M.; Verduzco, R. Polymer-coated Nanoparticles for Enhanced Oil Recovery. J. Appl. Polym. Sci. 2014, 131, 40576. [Google Scholar] [CrossRef]
- Zhao, X.; Qiu, Z.; Gao, J.; Ren, X.; Li, J.; Huang, W. Mechanism and Effect of Nanoparticles on Controlling Fines Migration in Unconsolidated Sandstone Formations. SPE J. 2021, 26, 3819–3831. [Google Scholar] [CrossRef]
- Díez, R.; Medina, O.E.; Giraldo, L.J.; Cortés, F.B.; Franco, C.A. Development of Nanofluids for the Inhibition of Formation Damage Caused by Fines Migration: Effect of the Interaction of Quaternary Amine (CTAB) and MgO Nanoparticles. Nanomaterials 2020, 10, 928. [Google Scholar] [CrossRef] [PubMed]
- Younes, H.; Mao, M.; Murshed, S.M.S.; Lou, D.; Hong, H.; Peterson, G.P. Nanofluids: Key Parameters to Enhance Thermal Conductivity and Its Applications. Appl. Therm. Eng. 2022, 207, 118202. [Google Scholar] [CrossRef]
- Hamze, S.; Berrada, N.; Cabaleiro, D.; Desforges, A.; Ghanbaja, J.; Gleize, J.; Bégin, D.; Michaux, F.; Maré, T.; Vigolo, B. Few-Layer Graphene-Based Nanofluids with Enhanced Thermal Conductivity. Nanomaterials 2020, 10, 1258. [Google Scholar] [CrossRef]
- Dong, J.; Zheng, Q.; Xiong, C.; Sun, E.; Chen, J. Experimental Investigation and Application of Stability and Thermal Characteristics of SiO2-Ethylene-Glycol/Water Nanofluids. Int. J. Therm. Sci. 2022, 176, 107533. [Google Scholar] [CrossRef]
- Navarro, M.E.; Palacios, A.; Jiang, Z.; Avila, A.; Qiao, G.; Mura, E.; Ding, Y. Effect of SiO2 Nanoparticles Concentration on the Corrosion Behaviour of Solar Salt-Based Nanofluids for Concentrating Solar Power Plants. Sol. Energy Mater. Sol. Cells 2022, 247, 111923. [Google Scholar] [CrossRef]
- Kulkarni, H.B.; Nadakatti, M.M.; Kulkarni, S.C.; Kulkarni, R.M. Investigations on Effect of Nanofluid Based Minimum Quantity Lubrication Technique for Surface Milling of Al7075-T6 Aerospace Alloy. Mater. Today Proc. 2020, 27, 251–256. [Google Scholar] [CrossRef]
- Divya, A.; Bala Anki Reddy, P. Aerospace Aspects of Electromagnetohydrodynamic Dusty Flow of Hybrid Nanofluid with Entropy Generation over a Rotating Disk. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2022. [Google Scholar] [CrossRef]
- Shah, T.R.; Ali, H.M.; Janjua, M.M. On Aqua-Based Silica (SiO2–Water) Nanocoolant: Convective Thermal Potential and Experimental Precision Evaluation in Aluminum Tube Radiator. Nanomaterials 2020, 10, 1736. [Google Scholar] [CrossRef]
- Ahmad, H.; Al-Khaled, K.; Sowayan, A.S.; Abdullah, M.; Hussain, M.; Hammad, A.; Khan, S.U.; Tlili, I. Experimental Investigation for Automotive Radiator Heat Transfer Performance with ZnO–Al2O3/Water-Based Hybird Nanoparticles: An Improved Thermal Model. Int. J. Mod. Phys. B 2023, 37, 2350050. [Google Scholar] [CrossRef]
- Tinti, A.; Carallo, G.A.; Greco, A.; Romero-Sánchez, M.D.; Vertuccio, L.; Guadagno, L. Effective Practical Solutions for De-Icing of Automotive Component. Nanomaterials 2022, 12, 2979. [Google Scholar] [CrossRef] [PubMed]
- Tamulevičius, T. Nanotechnologies in Textiles. Materials 2022, 15, 1466. [Google Scholar] [CrossRef]
- Zhang, S.; Fang, K.; Liu, X.; Qiao, X.; Wang, J. Simplified and Efficient Inkjet Printing of Cotton Fabrics Using Cationic Colored Nanoparticles. Ind. Crops Prod. 2023, 193, 116217. [Google Scholar] [CrossRef]
- Muneer, R.; Hashmet, M.R.; Pourafshary, P. Predicting the Critical Salt Concentrations of Monovalent and Divalent Brines to Initiate Fines Migration Using DLVO Modeling. J. Mol. Liq. 2022, 352, 118690. [Google Scholar] [CrossRef]
- James, R.O.; Healy, T.W. Adsorption of Hydrolyzable Metal Ions at the Oxide—Water Interface. III. A Thermodynamic Model of Adsorption. J. Colloid Interface Sci. 1972, 40, 65–81. [Google Scholar] [CrossRef]
- Dolinnyi, A.I. Features of Electrical Double Layers Formed Around Strongly Charged Nanoparticles Immersed in an Electrolyte Solution. The Effect of Ion Sizes. Colloid J. 2019, 81, 642–649. [Google Scholar] [CrossRef]
- Minea, A.A. A Review on Electrical Conductivity of Nanoparticle-Enhanced Fluids. Nanomaterials 2019, 9, 1592. [Google Scholar] [CrossRef] [Green Version]
- Setia, H.; Gupta, R.; Wanchoo, R.K. Stability of Nanofluids. In Proceedings of the Materials science forum. Trans Tech. Publ. 2013, 757, 139–149. [Google Scholar]
- Sennett, P.; Olivier, J.P. Colloidal Dispersions, Electrokinetic Effects, and the Concept of Zeta Potential. Ind. Eng. Chem. 1965, 57, 32–50. [Google Scholar] [CrossRef]
- Pochapski, D.J.; Carvalho dos Santos, C.; Leite, G.W.; Pulcinelli, S.H.; Santilli, C.V. Zeta Potential and Colloidal Stability Predictions for Inorganic Nanoparticle Dispersions: Effects of Experimental Conditions and Electrokinetic Models on the Interpretation of Results. Langmuir 2021, 37, 13379–13389. [Google Scholar] [CrossRef] [PubMed]
- Fakoya, M.F.; Shah, S.N. Emergence of Nanotechnology in the Oil and Gas Industry: Emphasis on the Application of Silica Nanoparticles. Petroleum 2017, 3, 391–405. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, W.; Dai, C.; Huang, Y.; Li, H.; Zhao, M.; He, L.; Jiao, B. Reducing Surfactant Adsorption on Rock by Silica Nanoparticles for Enhanced Oil Recovery. J. Pet. Sci. Eng. 2017, 153, 283–287. [Google Scholar] [CrossRef]
- Habibi, A.; Ahmadi, M.; Pourafshary, P.; Ayatollahi, S.; Al-Wahaibi, Y. Reduction of Fines Migration by Nanofluids Injection: An Experimental Study. SPE J. 2013, 18, 309–318. [Google Scholar] [CrossRef]
- Mansouri, M.; Nakhaee, A.; Pourafshary, P. Effect of SiO2 Nanoparticles on Fines Stabilization during Low Salinity Water Flooding in Sandstones. J. Pet. Sci. Eng. 2019, 174, 637–648. [Google Scholar] [CrossRef]
- Alkalbani, A.K.; Chala, G.T.; Alkalbani, A.M. Experimental Investigation of the Rheological Properties of Water Base Mud with Silica Nanoparticles for Deep Well Application. Ain Shams Eng. J. 2023, 102147, in press. [Google Scholar] [CrossRef]
- Martin, C.; Babaie, M.; Nourian, A.; Nasr, G.G. Designing Smart Drilling Fluids Using Modified Nano Silica to Improve Drilling Operations in Geothermal Wells. Geothermics 2023, 107, 102600. [Google Scholar] [CrossRef]
- Vu, K.A.; Mulligan, C.N. An Overview on the Treatment of Oil Pollutants in Soil Using Synthetic and Biological Surfactant Foam and Nanoparticles. Int. J. Mol. Sci. 2023, 24, 1916. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.; Wang, Y.; Yang, R.; Zhang, Y.; Gu, J.; Zhang, M.; Ren, S. Experimental Investigation of Low-Salinity Water Flooding in a Low-Permeability Oil Reservoir. Energy Fuels 2018, 32, 3108–3118. [Google Scholar] [CrossRef]
- Nasralla, R.A.; Nasr-El-Din, H.A. Impact of Cation Type and Concentration in Injected Brine on Oil Recovery in Sandstone Reservoirs. J. Pet. Sci. Eng. 2014, 122, 384–395. [Google Scholar] [CrossRef]
- Bordeaux-Rego, F.; Mehrabi, M.; Sanaei, A.; Sepehrnoori, K. Improvements on Modelling Wettability Alteration by Engineered Water Injection: Surface Complexation at the Oil/Brine/Rock Contact. Fuel 2021, 284, 118991. [Google Scholar] [CrossRef]
- Kosmulski, M. The PH-Dependent Surface Charging and Points of Zero Charge. V. Update. J. Colloid Interface Sci. 2011, 353, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.D.; Al-Mahrouqi, D.; Vinogradov, J. Zeta Potential in Oil-Water-Carbonate Systems and Its Impact on Oil Recovery during Controlled Salinity Water-Flooding. Sci. Rep. 2016, 6, 37363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmadi, M.; Habibi, A.; Pourafshary, P.; Ayatollahi, S. Zeta-Potential Investigation and Experimental Study of Nanoparticles Deposited on Rock Surface to Reduce Fines Migration. SPE J. 2013, 18, 534–544. [Google Scholar] [CrossRef]
- Rezaei Gomari, S.; Amrouche, F.; Santos, R.G.; Greenwell, H.C.; Cubillas, P. A New Framework to Quantify the Wetting Behaviour of Carbonate Rock Surfaces Based on the Relationship between Zeta Potential and Contact Angle. Energies 2020, 13, 993. [Google Scholar] [CrossRef] [Green Version]
- Muneer, R.; Pourafshary, P.; Hashmet, M.R. An Integrated Modeling Approach to Predict Critical Flow Rate for Fines Migration Initiation in Sandstone Reservoirs and Water-Bearing Formations. J. Mol. Liq. 2023, 376, 121462. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, Z.; Yang, Y. Study of the Air-Entraining Behavior Based on the Interactions between Cement Particles and Selected Cationic, Anionic and Nonionic Surfactants. Materials 2020, 13, 3514. [Google Scholar] [CrossRef]
- Schmid, M.; Plank, J. Interaction of Individual Meta Clays with Polycarboxylate (PCE) Superplasticizers in Cement Investigated via Dispersion, Zeta Potential and Sorption Measurements. Appl. Clay Sci. 2021, 207, 106092. [Google Scholar] [CrossRef]
- Morantes, D.; Muñoz, E.; Kam, D.; Shoseyov, O. Highly Charged Cellulose Nanocrystals Applied as a Water Treatment Flocculant. Nanomaterials 2019, 9, 272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dlamini, N.G.; Basson, A.K.; Pullabhotla, V.S.R. Optimization and Application of Bioflocculant Passivated Copper Nanoparticles in the Wastewater Treatment. Int. J. Environ. Res. Public Health 2019, 16, 2185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, K.; Gao, H.; Sun, F.; Chen, W.; Xie, R.; Cai, Y. Effect of Glass Transition Temperatures and Zeta Potentials of Cationic Copolymer Latexes on Pigment Dyeing. Fibers Polym. 2017, 18, 2255–2260. [Google Scholar] [CrossRef]
- Abidi, N.; Duplay, J.; Jada, A.; Errais, E.; Ghazi, M.; Semhi, K.; Trabelsi-Ayadi, M. Removal of Anionic Dye from Textile Industries’ Effluents by Using Tunisian Clays as Adsorbents. Ζeta Potential and Streaming-Induced Potential Measurements. Comptes Rendus Chim. 2019, 22, 113–125. [Google Scholar] [CrossRef]
- Multani, R.S.; Williams, H.; Johnson, B.; Li, R.; Waters, K.E. The Effect of Superstructure on the Zeta Potential, Xanthate Adsorption, and Flotation Response of Pyrrhotite. Colloids Surfaces A Physicochem. Eng. Asp. 2018, 551, 108–116. [Google Scholar] [CrossRef]
- Liu, X.; Wang, K.; Tan, X.; Zeng, H.; Liu, Q. Removal of Fine Solids from Bitumen by Hetero-Aggregation and Magnetic Separation Using Surface-Modified Magnetite Nanoparticles. Part 1: Proof of Concept. Sep. Purif. Technol. 2022, 300, 121840. [Google Scholar] [CrossRef]
- Cano-Sarmiento, C.; Téllez-Medina, D.I.; Viveros-Contreras, R.; Cornejo-Mazón, M.; Figueroa-Hernández, C.Y.; García-Armenta, E.; Alamilla-Beltrán, L.; García, H.S.; Gutiérrez-López, G.F. Zeta Potential of Food Matrices. Food Eng. Rev. 2018, 10, 113–138. [Google Scholar] [CrossRef]
- Guimarães, J.T.; Silva, E.K.; Alvarenga, V.O.; Costa, A.L.R.; Cunha, R.L.; Sant’Ana, A.S.; Freitas, M.Q.; Meireles, M.A.A.; Cruz, A.G. Physicochemical Changes and Microbial Inactivation after High-Intensity Ultrasound Processing of Prebiotic Whey Beverage Applying Different Ultrasonic Power Levels. Ultrason. Sonochem. 2018, 44, 251–260. [Google Scholar] [CrossRef]
- Biriukov, D.; Fibich, P.; Předota, M. Zeta Potential Determination from Molecular Simulations. J. Phys. Chem. C 2020, 124, 3159–3170. [Google Scholar] [CrossRef]
- Ovanesyan, Z.; Aljzmi, A.; Almusaynid, M.; Khan, A.; Valderrama, E.; Nash, K.L.; Marucho, M. Ion–Ion Correlation, Solvent Excluded Volume and PH Effects on Physicochemical Properties of Spherical Oxide Nanoparticles. J. Colloid Interface Sci. 2016, 462, 325–333. [Google Scholar] [CrossRef] [Green Version]
- Vinogradov, J.; Jackson, M.D.; Chamerois, M. Zeta Potential in Sandpacks: Effect of Temperature, Electrolyte PH, Ionic Strength and Divalent Cations. Colloids Surfaces A Physicochem. Eng. Asp. 2018, 553, 259–271. [Google Scholar] [CrossRef]
- Liu, X.; Mäki-Arvela, P.; Aho, A.; Vajglova, Z.; Gun’ko, V.M.; Heinmaa, I.; Kumar, N.; Eränen, K.; Salmi, T.; Murzin, D.Y. Zeta Potential of Beta Zeolites: Influence of Structure, Acidity, PH, Temperature and Concentration. Molecules 2018, 23, 946. [Google Scholar] [CrossRef] [Green Version]
- Shah, A.H.; Rather, M.A. Effect of Calcination Temperature on the Crystallite Size, Particle Size and Zeta Potential of TiO2 Nanoparticles Synthesized via Polyol-Mediated Method. Mater. Today Proc. 2021, 44, 482–488. [Google Scholar] [CrossRef]
- Cacua, K.; Ordoñez, F.; Zapata, C.; Herrera, B.; Pabón, E.; Buitrago-Sierra, R. Surfactant Concentration and PH Effects on the Zeta Potential Values of Alumina Nanofluids to Inspect Stability. Colloids Surfaces A Physicochem. Eng. Asp. 2019, 583, 123960. [Google Scholar] [CrossRef]
- Asadi, A.; Asadi, M.; Siahmargoi, M.; Asadi, T.; Andarati, M.G. The Effect of Surfactant and Sonication Time on the Stability and Thermal Conductivity of Water-Based Nanofluid Containing Mg (OH) 2 Nanoparticles: An Experimental Investigation. Int. J. Heat Mass Transf. 2017, 108, 191–198. [Google Scholar] [CrossRef]
- Mucha, M.; Maršálek, R.; Bukáčková, M.; Zelenková, G. Interaction among Clays and Bovine Serum Albumin. RSC Adv. 2020, 10, 43927–43939. [Google Scholar] [CrossRef] [PubMed]
- Smoluchowski, M. von Contribution to the Theory of Electro-Osmosis and Related Phenomena. Bull. Int. Acad. Sci. Cracovie 1903, 3, 184–199. [Google Scholar]
- Li, Z.; Liu, Y.; Zheng, Y.; Xu, R. Zeta Potential at the Root Surfaces of Rice Characterized by Streaming Potential Measurements. Plant Soil 2015, 386, 237–250. [Google Scholar] [CrossRef]
- Luong, D.T.; Rudolf, S. Zeta Potential Measurement Using Streaming Potential in Porous Media. VNU J. Sci. Math. 2015, 31, 4. [Google Scholar]
- Liu, H.H.; Lanphere, J.; Walker, S.; Cohen, Y. Effect of Hydration Repulsion on Nanoparticle Agglomeration Evaluated via a Constant Number Monte–Carlo Simulation. Nanotechnology 2015, 26, 45708. [Google Scholar] [CrossRef]
- Marsalek, R.; Kotyrba, M.; Volna, E.; Jarusek, R. Neural Network Modelling for Prediction of Zeta Potential. Mathematics 2021, 9, 3089. [Google Scholar] [CrossRef]
- Grisham, D.R.; Nanda, V. Zeta Potential Prediction from Protein Structure in General Aqueous Electrolyte Solutions. Langmuir 2020, 36, 13799–13803. [Google Scholar] [CrossRef]
- Peterson, K.L. Artificial Neural Networks and Their Use in Chemistry. Rev. Comput. Chem. 2000, 16, 53–140. [Google Scholar]
- Duch, W.; Diercksen, G.H.F. Neural Networks as Tools to Solve Problems in Physics and Chemistry. Comput. Phys. Commun. 1994, 82, 91–103. [Google Scholar] [CrossRef]
- Zupan, J.; Novič, M.; Ruisánchez, I. Kohonen and Counterpropagation Artificial Neural Networks in Analytical Chemistry. Chemom. Intell. Lab. Syst. 1997, 38, 1–23. [Google Scholar] [CrossRef]
- Mohaghegh, S.; Ameri, S. Artificial Neural Network as a Valuable Tool for Petroleum Engineers. Pap. SPE 1995, 29220, 1–6. [Google Scholar]
- Kang, P.-S.; Lim, J.-S.; Huh, C. Artificial Neural Network Model to Estimate the Viscosity of Polymer Solutions for Enhanced Oil Recovery. Appl. Sci. 2016, 6, 188. [Google Scholar] [CrossRef] [Green Version]
- Youshia, J.; Ali, M.E.; Lamprecht, A. Artificial Neural Network Based Particle Size Prediction of Polymeric Nanoparticles. Eur. J. Pharm. Biopharm. 2017, 119, 333–342. [Google Scholar] [CrossRef]
- Amirian, E.; Fedutenko, E.; Yang, C.; Chen, Z.; Nghiem, L. Artificial Neural Network Modeling and Forecasting of Oil Reservoir Performance. In Applications of Data Management and Analysis; Springer: Cham, Switzerland, 2018; pp. 43–67. [Google Scholar]
- Ren, X.; Hou, J.; Song, S.; Liu, Y.; Chen, D.; Wang, X.; Dou, L. Lithology Identification Using Well Logs: A Method by Integrating Artificial Neural Networks and Sedimentary Patterns. J. Pet. Sci. Eng. 2019, 182, 106336. [Google Scholar] [CrossRef]
- Belhaj, A.F.; Elraies, K.A.; Alnarabiji, M.S.; Kareem, F.A.A.; Shuhli, J.A.; Mahmood, S.M.; Belhaj, H. Experimental Investigation, Binary Modelling and Artificial Neural Network Prediction of Surfactant Adsorption for Enhanced Oil Recovery Application. Chem. Eng. J. 2021, 406, 127081. [Google Scholar] [CrossRef]
- Parizad, A.; Shahbazi, K.; Tanha, A.A. SiO2 Nanoparticle and KCl Salt Effects on Filtration and Thixotropical Behavior of Polymeric Water Based Drilling Fluid: With Zeta Potential and Size Analysis. Results Phys. 2018, 9, 1656–1665. [Google Scholar] [CrossRef]
- Ma, X.; Lee, N.-H.; Oh, H.-J.; Kim, J.-W.; Rhee, C.-K.; Park, K.-S.; Kim, S.-J. Surface Modification and Characterization of Highly Dispersed Silica Nanoparticles by a Cationic Surfactant. Colloids Surfaces A Physicochem. Eng. Asp. 2010, 358, 172–176. [Google Scholar] [CrossRef]
- Wang, R.; Liu, T.; Ning, F.; Ou, W.; Zhang, L.; Wang, Z.; Peng, L.; Sun, J.; Liu, Z.; Li, T. Effect of Hydrophilic Silica Nanoparticles on Hydrate Formation: Insight from the Experimental Study. J. Energy Chem. 2019, 30, 90–100. [Google Scholar] [CrossRef] [Green Version]
- Esfandyari Bayat, A.; Junin, R.; Shamshirband, S.; Tong Chong, W. Transport and Retention of Engineered Al2O3, TiO2 and SiO2 Nanoparticles through Various Sedimentary Rocks. Sci. Rep. 2015, 5, srep14264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chequer, L.; Bedrikovetsky, P.; Carageorgos, T.; Badalyan, A.; Gitis, V. Mobilization of Attached Clustered Colloids in Porous Media. Water Resour. Res. 2019, 55, 5696–5714. [Google Scholar] [CrossRef]
- Fogden, A. Effect of Water Salinity and PH on the Wettability of a Model Substrate. Energy Fuels 2011, 25, 5113–5125. [Google Scholar] [CrossRef]
- Lebedeva, E.V.; Fogden, A. Micro-CT and Wettability Analysis of Oil Recovery from Sand Packs and the Effect of Waterflood Salinity and Kaolinite. Energy Fuels 2011, 25, 5683–5694. [Google Scholar] [CrossRef]
- Hussain, F.; Zeinijahromi, A.; Bedrikovetsky, P.; Badalyan, A.; Carageorgos, T.; Cinar, Y. An Experimental Study of Improved Oil Recovery through Fines-Assisted Waterflooding. J. Pet. Sci. Eng. 2013, 109, 187–197. [Google Scholar] [CrossRef]
- Xie, Q.; Saeedi, A.; Pooryousefy, E.; Liu, Y. Extended DLVO-Based Estimates of Surface Force in Low Salinity Water Flooding. J. Mol. Liq. 2016, 221, 658–665. [Google Scholar] [CrossRef]
- Shehata, A.M.; Nasr-El-Din, H.A. Zeta Potential Measurements: Impact of Salinity on Sandstone Minerals. Proc. SPE Int. Symp. Oilf. Chem. 2015, 2, 789–805. [Google Scholar] [CrossRef]
- Walker, E.; Glover, P.W.J. Measurements of the Relationship between Microstructure, PH, and the Streaming and Zeta Potentials of Sandstones. Transp. Porous Media 2018, 121, 183–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasralla, R.A.; Nasr-El-Din, H.A. Double-Layer Expansion: Is It a Primary Mechanism of Improved Oil Recovery by Low-Salinity Waterflooding? SPE Reserv. Eval. Eng. 2014, 17, 49–59. [Google Scholar] [CrossRef]
- Xie, Q.; Liu, Y.; Wu, J.; Liu, Q. Ions Tuning Water Flooding Experiments and Interpretation by Thermodynamics of Wettability. J. Pet. Sci. Eng. 2014, 124, 350–358. [Google Scholar] [CrossRef]
- Yao, J.; Han, H.; Hou, Y.; Gong, E.; Yin, W. A Method of Calculating the Interaction Energy between Particles in Minerals Flotation. Math. Probl. Eng. 2016, 2016, 8430745. [Google Scholar] [CrossRef] [Green Version]
- Alkafeef, S.F.; Alajmi, A.F. Streaming Potentials and Conductivities of Reservoir Rock Cores in Aqueous and Non-Aqueous Liquids. Colloids Surfaces A Physicochem. Eng. Asp. 2006, 289, 141–148. [Google Scholar] [CrossRef]
- Vinogradov, J.; Jackson, M.D. Zeta Potential in Intact Natural Sandstones at Elevated Temperatures. Geophys. Res. Lett. 2015, 42, 6287–6294. [Google Scholar] [CrossRef] [Green Version]
- Vinogradov, J.; Jaafar, M.Z.; Jackson, M.D. Measurement of Streaming Potential Coupling Coefficient in Sandstones Saturated with Natural and Artificial Brines at High Salinity. J. Geophys. Res. Solid Earth 2010, 115, B12. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, M.; Habibi, A.; Pourafshary, P.; Ayatollahi, S. An Experimental Study of Interaction between Nanoparticles’ Deposition on a Sintered Porous Medium and Migratory Fines. J. Porous Media 2013, 16, 459–467. [Google Scholar] [CrossRef]
- Assef, Y.; Arab, D.; Pourafshary, P. Application of Nanofluid to Control Fines Migration to Improve the Performance of Low Salinity Water Flooding and Alkaline Flooding. J. Pet. Sci. Eng. 2014, 124, 331–340. [Google Scholar] [CrossRef]
- Al-Anssari, S.; Arif, M.; Wang, S.; Barifcani, A.; Iglauer, S. Stabilising Nanofluids in Saline Environments. J. Colloid Interface Sci. 2017, 508, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Awan, F.U.R.; Keshavarz, A.; Akhondzadeh, H.; Al-Anssari, S.; Al-Yaseri, A.; Nosrati, A.; Ali, M.; Iglauer, S. Stable Dispersion of Coal Fines during Hydraulic Fracturing Flowback in Coal Seam Gas Reservoirs—An Experimental Study. Energy Fuels 2020, 34, 5566–5577. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, L.J.; Algehyne, E.A.; Usman, S.S.; Ahmad, A.; Chakraborty, C.; Mohammed, I.A. Supervised Machine Learning Models for Prediction of COVID-19 Infection Using Epidemiology Dataset. SN Comput. Sci. 2021, 2, 11. [Google Scholar] [CrossRef]
- Rivera, J.I.; Bonilla, C.A. Predicting Soil Aggregate Stability Using Readily Available Soil Properties and Machine Learning Techniques. Catena 2020, 187, 104408. [Google Scholar] [CrossRef]
- Moayedi, H.; Tien Bui, D.; Gör, M.; Pradhan, B.; Jaafari, A. The Feasibility of Three Prediction Techniques of the Artificial Neural Network, Adaptive Neuro-Fuzzy Inference System, and Hybrid Particle Swarm Optimization for Assessing the Safety Factor of Cohesive Slopes. ISPRS Int. J. Geo-Inf. 2019, 8, 391. [Google Scholar] [CrossRef] [Green Version]
- Pearson, K. VII. Note on regression and inheritance in the case of two parents. Proc. R. Soc. 1895, 58, 240–242. [Google Scholar]
- Horak, J.; Vrbka, J.; Suler, P. Support Vector Machine Methods and Artificial Neural Networks Used for the Development of Bankruptcy Prediction Models and Their Comparison. J. Risk Financ. Manag. 2020, 13, 60. [Google Scholar] [CrossRef] [Green Version]
- Msiza, I.S.; Nelwamondo, F.V.; Marwala, T. Artificial Neural Networks and Support Vector Machines for Water Demand Time Series Forecasting. In Proceedings of the 2007 IEEE International Conference on Systems, Man and Cybernetics, Montreal, QC, Canada, 7–10 October 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 638–643. [Google Scholar]
- Huang, F.; Kang, Y.; You, L.; Li, X.; You, Z. Massive Fines Detachment Induced by Moving Gas-Water Interfaces during Early Stage Two-Phase Flow in Coalbed Methane Reservoirs. Fuel 2018, 222, 193–206. [Google Scholar] [CrossRef]
Input Parameter | Values | Output | Sources |
---|---|---|---|
Silica nanoparticle size | 10–50 nm | Zeta potential (mV) | [10,14,52,76,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117] |
Nanoparticle concentration | 0.005–6 wt% | ||
Temperature | 20–150 °C | ||
Salinity | NaCl: 30–315,000 ppm KCl: 500–60,000 ppm | ||
pH | 1–11 | ||
Medium | Water; sand; glass beads; coal; kaolinite |
Response Variable | Indices | Value |
---|---|---|
Zeta potential | Correlation coefficient | 0.680 |
RMSE | 10.722 | |
MAPE | 0.267 |
Response Variable | Indices | Category | Value |
---|---|---|---|
Zeta potential | Correlation coefficient | Training | 0.997 |
Test | 0.516 | ||
RMSE | Training | 1.155 | |
Test | 12.271 | ||
MAPE | Training | 0.019 | |
Test | 0.288 |
Response Variable | Indices | Category | Value |
---|---|---|---|
Zeta potential | Correlation coefficient | Training | 0.982 |
Test | 0.923 | ||
RMSE | Training | 2.754 | |
Test | 5.347 | ||
MAPE | Training | 0.053 | |
Test | 0.131 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muneer, R.; Hashmet, M.R.; Pourafshary, P.; Shakeel, M. Unlocking the Power of Artificial Intelligence: Accurate Zeta Potential Prediction Using Machine Learning. Nanomaterials 2023, 13, 1209. https://doi.org/10.3390/nano13071209
Muneer R, Hashmet MR, Pourafshary P, Shakeel M. Unlocking the Power of Artificial Intelligence: Accurate Zeta Potential Prediction Using Machine Learning. Nanomaterials. 2023; 13(7):1209. https://doi.org/10.3390/nano13071209
Chicago/Turabian StyleMuneer, Rizwan, Muhammad Rehan Hashmet, Peyman Pourafshary, and Mariam Shakeel. 2023. "Unlocking the Power of Artificial Intelligence: Accurate Zeta Potential Prediction Using Machine Learning" Nanomaterials 13, no. 7: 1209. https://doi.org/10.3390/nano13071209
APA StyleMuneer, R., Hashmet, M. R., Pourafshary, P., & Shakeel, M. (2023). Unlocking the Power of Artificial Intelligence: Accurate Zeta Potential Prediction Using Machine Learning. Nanomaterials, 13(7), 1209. https://doi.org/10.3390/nano13071209