The Various Packing Structures of Tb@C82 (I, II) Isomers in Their Cocrystals with Ni(OEP)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis, Isolation and Characterization
2.2. Single-Crystal X-ray Diffraction Analysis
2.3. Theoretical Calculation Details
3. Results and Discussion
3.1. Multistage HPLC Isolation of Tb@C82 (I, II) Isomers
3.2. Purity Evaluation and Spectroscopic Characterization
3.3. Crystallographic Study
3.4. Computational Study
3.5. Electrochemical Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chaur, M.N.; Melin, F.; Ortiz, A.L.; Echegoyen, L. Chemical, electrochemical, and structural properties of endohedral metallofullerenes. Angew. Chem. Int. Ed. 2009, 48, 7514–7538. [Google Scholar] [CrossRef] [PubMed]
- Han, X.Y.; Xin, J.P.; Yao, Y.R.; Liang, Z.H.; Qiu, Y.F.; Chen, M.Q.; Yang, S.F. Capturing the long-sought Dy@C2v(5)-C80 via benzyl radical stabilization. Nanomaterials 2022, 12, 3291–3301. [Google Scholar] [CrossRef]
- Ubasart, E.; Borodin, O.; Fuertes-Espinosa, C.; Xu, Y.; García-Simón, C.; Gómez, L.; Juanhuix, J.; Gándara, F.; Imaz, I.; Maspoch, D.; et al. Three-shell supramolecular complex enables the symmetry-mismatched chemo- and regioselective bis-functionalization of C60. Nat. Chem. 2021, 13, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Ksenofontov, A.A.; Bichan, N.G.; Ilya, A.K.; Elena, V.A.; Mikhail, B.B.; Anatolij, I.V. Novel non-covalent supramolecular systems based on zinc(II) bis(dipyrromethenate)s with fullerenes. J. Mol. Liq. 2018, 269, 327–334. [Google Scholar] [CrossRef]
- Wei, G.; Fan, B.B.; Qi, F.; Lin, F.R.; Sun, R.; Xia, X.X.; Gao, J.H.; Zhong, C.; Lu, X.H.; Min, J.; et al. Asymmetric isomer effects in benzo [c][1,2,5] thiadiazole-fused nonacyclic acceptors: Dielectric constant and molecular crystallinity control for significant photovoltaic performance enhancement. Adv. Funct. Mater. 2021, 31, 2104369. [Google Scholar]
- Alexander, A.K.; Mikhail, M.L.; Nataliya, G.B.; Ilya, A.K.; Nadezhda, O.K.; Ksenia, V.K.; Elena, V.A. Non-covalent supramolecular systems with photoinduced electron transfer based on zinc bis(dipyrromethenate)s and C60. Dyes Pigm. 2021, 185, 108918. [Google Scholar]
- Shi, W.S.; Salerno, F.; Ward, M.D.; Santana-Bonilla, A.; Wade, J.; Hou, X.; Liu, T.; Dennis, T.J.; Campbell, A.J.; Jelfs, K.E.; et al. Fullerene desymmetrization as a means to achieve single-enantiomer Eelectron acceptors with maximized chiroptical responsiveness. Adv. Mater. 2021, 33, 2004115. [Google Scholar] [CrossRef]
- Lu, X.; Akasaka, T.; Nagase, S. Chemistry of endohedral metallofullerenes: The role of metals. Chem. Commun. 2011, 47, 5942–5957. [Google Scholar] [CrossRef]
- Rodríguez-Fortea, A.; Balch, A.L.; Poblet, J.M. Endohedral metallofullerenes: A unique host–guest association. Chem. Soc. Rev. 2011, 40, 3551–3563. [Google Scholar] [CrossRef]
- Suzuki, T.; Kikuchi, K.; Oguri, F.; Nakao, Y.; Suzuki, S.; Achiba, Y.; Yamamoto, K.; Funasaka, H.; Takahashi, T. Electrochemical properties of fullerenolanthanides. Tetrahedron 1996, 52, 4973–4982. [Google Scholar] [CrossRef]
- Xu, W.; Niu, B.; Feng, L.; Shi, Z.J.; Lian, Y.F. Access to an unexplored chiral C82 cage by encaging a divalent metal: Structural elucidation and electrochemical studies of Sm@C2(5)-C82. Chem. Eur. J. 2012, 18, 14246–14249. [Google Scholar] [CrossRef]
- Hu, Z.; Hao, Y.; Slanina, Z.; Gu, Z.G.; Shi, Z.J.; Uhlík, F.; Zhao, Y.F.; Feng, L. Popular C82 fullerene cage encapsulating a divalent metal ion Sm2+: Structure and electrochemistry. Inorg. Chem. 2015, 54, 2103–2108. [Google Scholar] [CrossRef]
- Bao, L.P.; Yu, P.Y.; Li, Y.; Pan, C.W.; Shen, W.Q.; Jin, P.; Liang, S.Q.; Lu, X. Highly regioselective complexation of tungsten with Eu@C82/Eu@C84: Interplay between endohedral and exohedral metallic units induced by electron transfer. Chem. Sci. 2019, 10, 4945–4950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, X.; Slanina, Z.; Akasaka, T.; Tsuchiya, T.; Mizorogi, N.; Nagase, S. Yb@C2n (n = 40, 41, 42): New fullerene allotropes with unexplored electrochemical properties. J. Am. Chem. Soc. 2010, 132, 5896–5905. [Google Scholar] [CrossRef]
- Sado, Y.; Aoyagi, S.; Kitaura, R.; Miyata, Y.; Nishibori, E.; Sawa, H.; Sugimoto, K.; Shinohara, H. Structure of Tm@C82(I) metallofullerene by single-crystal X-ray diffraction using the 1:2 co-crystal with octaethylporphyrinnickel (Ni(OEP)). J. Phys. Chem. C 2013, 117, 6437–6442. [Google Scholar] [CrossRef]
- Iiduka, Y.; Wakahara, T.; Nakajima, K.; Nakahodo, T.; Tsuchiya, T.; Maeda, Y.; Akasaka, T.; Yoza, K.; Liu, T.H.; Mizorogi, N.; et al. Experimental and theoretical studies of the scandium carbide endohedral metallofullerene Sc2C2@C82 and its carbene derivative. Angew. Chem. Int. Ed. 2007, 46, 5562–5564. [Google Scholar] [CrossRef]
- Wang, Z.; Nakanishi, Y.; Noda, S.; Niwa, H.; Zhang, J.Y.; Kitaura, R.; Shinohara, H. Missing small-bandgap metallofullerenes: Their isolation and electronic properties. Angew. Chem. Int. Ed. 2013, 125, 11986–11990. [Google Scholar] [CrossRef]
- Akasaka, T.; Kono, T.S.; Matsunaga, Y.; Wakahara, T.; Nakahodo, T.; Ishitsuka, M.O.; Maeda, Y.; Tsuchiya, T.; Kato, T.; Liu, T.H.; et al. Isolation and characterization of carbene derivatives of La@C82(Cs). J. Phys. Chem. A 2008, 112, 1294–1297. [Google Scholar] [CrossRef]
- Slanina, Z.; Uhlík, F.; Feng, L.; Adamowicz, Z. Ho@C82 metallofullerene: Calculated isomeric composition. ECS J. Solid State Sci. Technol. 2022, 11, 5–8. [Google Scholar] [CrossRef]
- Ding, J.Q.; Yang, S.H. Isolation and characterization of Pr@C82 and Pr2@C80. J. Am. Chem. Soc. 1996, 118, 11254–11257. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, C.; Zhang, M.; Bai, Z.; Xie, F.F.; Tan, Y.Z.; Guo, Y.; Hu, K.J.; Cao, L.; Zhang, S.; et al. A Gd@C82 single-molecule electrets. Nat. Nanotechnol. 2020, 15, 1019–1024. [Google Scholar] [CrossRef]
- Nakanishi, Y.; Omachi, H.; Matsuura, S.; Miyata, Y.; Kitaura, R.; Segawa, Y.; Itami, K.; Shinohara, H. Size-selective complexation and extraction of endohedral metallofullerenes with cycloparaphenylene. Angew. Chem. Int. Ed. 2014, 53, 3102–3106. [Google Scholar] [CrossRef]
- Fan, L.Z.; Yang, S.F.; Yang, S.H. Electrochemistry of metallofullerene films: The major isomer of Dy@C82. Chem. Eur. J. 2003, 9, 5610–5617. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, Y.Y.; Lee, P.H.; Irle, S. Er3+ photoluminescence in Er2@C82 and Er2C2@C82 metallofullerenes elucidated by density functional theory. Inorg. Chem. 2017, 56, 6576–6583. [Google Scholar] [CrossRef]
- Wang, Y.F.; Morales-Martinez, R.; Zhan, X.X.; Yang, W.; Wang, Y.X.; Rodriguez-Fortea, A.; Poblet, J.M.; Feng, L.; Wang, S.; Chen, N. Unique four-electron metalto cage charge cransfer of Th to a C82 fullerene cage: Complete structural characterization of Th@C3v(8)-C82. J. Am. Chem. Soc. 2017, 139, 5110–5116. [Google Scholar] [CrossRef]
- Yao, Y.R.; Rosello, Y.; Ma, L.; Santiago, A.R.P.; Metta-Magana, A.; Chen, N.; Rodriguez-Fortea, A.; Poblet, J.M.; Echegoyen, L. Crystallographic characterization of U@C2n (2n = 82–86): Insights about metal-cage interactions for mono-metallofullerenes. J. Am. Chem. Soc. 2021, 143, 15309–15318. [Google Scholar] [CrossRef]
- Yasutake, Y.; Shi, Z.; Okazaki, T.; Shinohara, H.; Majima, Y. Single molecular orientation switching of an endohedral metallofullerene. Nano Lett. 2005, 5, 1057–1060. [Google Scholar] [CrossRef]
- Liu, F.P.; Velkos, G.; Krylov, D.S.; Spree, L.; Zalibera, M.R.; Samoylova, N.A.; Chen, C.H.; Rosenkranz, M.; Schiemenz, S.; Ziegs, F.; et al. Air-stable redox-active nanomagnets with lanthanide spins radical-bridged by a metal–metal bond. Nat. Commun. 2019, 10, 571–582. [Google Scholar] [CrossRef]
- Tianming, Z.; Christine, M.B.; James, C.D.; Anne, C.; Harry, C.D.; Marilyn, M.O.; Alan, L.B. Isolation and structural characterization of a family of endohedral fullerenes including the large, chiral cage fullerenes Tb3N@C88 and Tb3N@C86 as well as the Ih and D5h isomers of Tb3N@C80. J. Am. Chem. Soc. 2007, 129, 2035–2043. [Google Scholar]
- Liu, F.F.; Wang, S.; Guan, J.; Wei, T.; Zeng, M.; Yang, S.F. Putting a terbium-monometallic cyanide cluster into the C82 fullerene cage: TbCN@C2(5)-C82. Inorg. Chem. 2014, 53, 5201–5205. [Google Scholar] [CrossRef]
- Liu, F.F.; Wang, S.; Gao, C.L.; Deng, Q.M.; Zhu, X.J.; Kostanyan, A.; Westerström, R.; Jin, F.; Xie, S.Y.; Popov, A.A.; et al. Mononuclear clusterfullerene single-molecule magnet containing strained fused-pentagons stabilized by a nearly linear metal cyanide cluster. Angew. Chem. Int. Ed. 2017, 56, 1830–1834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, F.F.; Wei, T.; Wang, S.; Guan, J.; Lu, X.; Yang, S.F. A bent Tb2C2 cluster encaged in a CS(6)-C82 cage: Synthesis, isolation and X-ray crystallographic study. Fuller. Nanotubes Carbon Nanostruct. 2014, 22, 215–226. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, X.; Yu, Z.; Wang, J.; Gu, Z. Chemical modification of Tb@C82 by copper (I)-catalyzed cycloadditions. Chem. Mater. 2002, 14, 4021–4022. [Google Scholar] [CrossRef]
- Dong, W.; Nie, M.S.; Lian, Y.F. Isolation and electrochemical property of Tb@C82 isomers. Acta Chim. Sin. 2017, 75, 453–456. [Google Scholar] [CrossRef] [Green Version]
- Ueno, H.; Aoyagi, S.; Yamazaki, Y.; Ohkubo, K.; Ikuma, N.; Okada, H.; Kato, T.; Matsuo, Y.; Fukuzumi, S.; Kokubo, K. Electrochemical reduction of cationic Li+@C60 toneutral Li+@C60: Isolation and characterization of endohedral [60] fulleride. Chem. Sci. 2016, 7, 5770–5774. [Google Scholar] [CrossRef] [Green Version]
- Bao, L.; Pan, C.; Slanina, Z.; Uhlik, F.; Akasaka, T.; Lu, X. Isolation and crystallographic characterization of the labile isomer of Y@C82 cocrystallized with Ni(OEP): Unprecedented dimerization of pristine metallofullerenes. Angew. Chem. Int. Ed. 2016, 55, 9234–9238. [Google Scholar] [CrossRef]
- Hu, S.F.; Liu, T.; Shen, W.Q.; Slanina, Z.; Akasaka, T.; Xie, Y.P.; Uhlik, F.; Huang, W.H.; Lu, X. Isolation and structural characterization of Er@C2v(9)-C82 and Er@Cs(6)-C82: Regioselective dimerization of a pristine endohedral metallofullerene induced by cage symmetry. Inorg. Chem. 2019, 58, 2177–2182. [Google Scholar] [CrossRef]
- Suzuki, M.; Yamada, M.; Maeda, Y.; Sato, S.; Takano, Y.; Uhlik, F.; Slanina, Z.; Lian, Y.F.; Lu, X.; Nagase, S.; et al. The unanticipated dimerization of Ce@C2v(9)-C82 upon co-crystallization with Ni(octaethylporphyrin) and comparison with monomeric M@C2v(9)-C82 (M = La, Sc, and Y). Chem. Eur. J. 2016, 22, 18115–18122. [Google Scholar] [CrossRef]
- Krätschmer, W.; Lowell, D.L.; Konstantinos, F.; Donald, R.H. Solid C60: A new form of carbon. Nature 1990, 347, 354–358. [Google Scholar] [CrossRef]
- Grigory, N.C.; Krätschmer, W.; Irina, V.O.; Gariy, A.G.; Natalia, G.V.; Kolonenko, A.L.; Aleksander, I.D. Synthesis of fullerenes in a high-frequency arc plasma under elevated helium pressure. Carbon 2013, 62, 389–392. [Google Scholar]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar]
- Petersson, G.A.; Al Laham, M.A.A. Complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J. Chem. Phys. 1991, 94, 6081–6090. [Google Scholar] [CrossRef]
- Petersson, G.A.; Bennett, A.; Tensfeldt, T.G.; Al-Laham, M.A.; Shirley, W.A.; Mantzaris, J.A. Complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J. Chem. Phys. 1988, 89, 2193–2218. [Google Scholar] [CrossRef]
- Cao, X.; Dolg, M. Segmented contraction scheme for small-core lanthanide pseudopotential basis sets. J. Mol. Struct. THEOCHEM 2002, 581, 139–147. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. Gaussian 09 (Revision D.01); Gaussian, Inc.: Wallingford, CT, USA, 2013. [Google Scholar]
- Macrae, C.F.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Shields, G.P.; Taylor, R.; Towler, M.; van de Streek, J. Mercury: Visualization and analysis of crystal structures. J. Appl. Crystallogr. 2006, 39, 453–457. [Google Scholar] [CrossRef] [Green Version]
- Bao, L.P.; Wang, B.Z.; Yu, P.Y.; Huang, C.; Pan, C.W.; Fang, H.Y.; Akasaka, T.; Guldi, D.M.; Lu, X. Intermolecular packing and charge transfer in metallofullerene/porphyrin cocrystals. Chem. Commun. 2019, 55, 6018–6021. [Google Scholar] [CrossRef]
- Zhang, Y.; Guan, Y.N.; Chen, M.Q.; Shen, Y.P.; Pan, Q.J.; Lian, Y.F.; Yang, S.F. Favorite orientation of the carbon cage and a unique two-dimensional-layered packing model in the cocrystals of Nd@C82 (I, II) isomers with decapyrrylcorannulene. Inorg. Chem. 2021, 60, 1462–1471. [Google Scholar] [CrossRef] [PubMed]
EMFs | oxE2 (V) | oxE1 (V) | redE1 (V) | redE2 (V) | redE3 (V) | redE4 (V) | redE5 (V) | EC Gap (V) |
---|---|---|---|---|---|---|---|---|
Tb@C2v(9)-C82 | 1.10 | 0.09 | −0.40 | −1.36 | −1.87 | −2.34 | −2.61 | 0.49 |
Tb@CS(6)-C82 | 1.10 | −0.05 | −0.42 | −1.43 | −1.76 | −2.04 | −2.43 | 0.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, W.; Zhou, Q.; Shen, W.; Yang, L.; Jin, P.; Lu, X.; Lian, Y. The Various Packing Structures of Tb@C82 (I, II) Isomers in Their Cocrystals with Ni(OEP). Nanomaterials 2023, 13, 994. https://doi.org/10.3390/nano13060994
Dong W, Zhou Q, Shen W, Yang L, Jin P, Lu X, Lian Y. The Various Packing Structures of Tb@C82 (I, II) Isomers in Their Cocrystals with Ni(OEP). Nanomaterials. 2023; 13(6):994. https://doi.org/10.3390/nano13060994
Chicago/Turabian StyleDong, Wei, Qin Zhou, Wangqiang Shen, Le Yang, Peng Jin, Xing Lu, and Yongfu Lian. 2023. "The Various Packing Structures of Tb@C82 (I, II) Isomers in Their Cocrystals with Ni(OEP)" Nanomaterials 13, no. 6: 994. https://doi.org/10.3390/nano13060994
APA StyleDong, W., Zhou, Q., Shen, W., Yang, L., Jin, P., Lu, X., & Lian, Y. (2023). The Various Packing Structures of Tb@C82 (I, II) Isomers in Their Cocrystals with Ni(OEP). Nanomaterials, 13(6), 994. https://doi.org/10.3390/nano13060994