Application of Thermally Fluorinated Multi-Wall Carbon Nanotubes as an Additive to an Li4Ti5O12 Lithium Ion Battery
Abstract
:1. Introduction
2. Experimental
2.1. Preparation of Fluorinated Multi-Walled Carbon Nanotubes
2.2. Characterization
2.3. Preparation of Electrode and Coin Cell
3. Results and Discussion
3.1. Effect of Thermal Fluorination on the Structure of MWCNTs
3.2. Electrochemical Performance of LTO with Added F-MWCNTs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tarascon, J.M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef]
- Yang, S.; Feng, X.; Müllen, K. Sandwich-like, graphene-based titania nanosheets with high surface area for fast lithium storage. Adv. Mater 2011, 23, 3575–3579. [Google Scholar] [CrossRef]
- Lee, M.L.; Li, Y.H.; Liao, S.C.; Chen, J.M.; Yeh, J.W.; Shih, H.C. Li4Ti5O12-coated graphite anode materials for lithium-ion batteries. Electrochim. Acta 2013, 112, 529–534. [Google Scholar] [CrossRef]
- Shi, Q.; Liu, W.; Qu, Q.; Gao, T.; Wang, Y.; Liu, G.; Battaglia, V.S.; Zheng, H. Robust solid/electrolyte interphase on graphite anode to suppress lithium inventory loss in lithium-ion batteries. Carbon 2017, 111, 291–298. [Google Scholar] [CrossRef]
- Lu, J.; Chen, Z.; Pan, F.; Cui, Y.; Amine, K. High-performance anode materials for rechargeable lithium-ion batteries. Electrochem. Energy Rev 2018, 1, 35–53. [Google Scholar] [CrossRef]
- Adams, R.A.; Varma, A.; Pol, V.G. Carbon anodes for nonaqueous alkali metal-ion batteries and their thermal safety aspects. Adv. Energy Mater. 2019, 9, 1900550. [Google Scholar] [CrossRef]
- Wang, G.X.; Bradhurst, D.H.; Dou, S.X.; Liu, H.K. Spinel Li[Li1/3Ti5/3]O4 as an anode material for lithium ion batteries. J. Power Sources 1999, 83, 156–161. [Google Scholar] [CrossRef]
- Kanamura, K.; Naito, H.; Takehara, Z.I. Novel Spinel Oxide Li4/3Ti5/3O4 as Electrochemical Insertion Materials for Rechargeable Lithium Batteries. Chem. Lett. 1997, 26, 45–46. [Google Scholar] [CrossRef]
- Yuan, T.; Yu, X.; Cai, R.; Zhou, Y.; Shao, Z. Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance. J. Power Sources 2010, 195, 4997–5004. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.M.; Yang, H.; Shen, X.D. Characterization and electrochemical properties of carbon-coated Li4Ti5O12 prepared by a citric acid sol–gel method. J. Alloys Compd. 2011, 509, 712–718. [Google Scholar] [CrossRef]
- Jung, H.G.; Venugopal, N.; Scrosati, B.; Sun, Y.K. A high energy and power density hybrid supercapacitor based on an advanced carbon-coated Li4Ti5O12 electrode. J. Power Sources 2013, 221, 266–271. [Google Scholar] [CrossRef]
- Kim, H.K.; Jegal, J.P.; Kim, J.Y.; Yoon, S.B.; Roh, K.C.; Kim, K.B. In situ fabrication of lithium titanium oxide by microwave-assisted alkalization for high-rate lithiumion batteries. J. Mater. Chem. A 2013, 1, 14849–14852. [Google Scholar] [CrossRef]
- Prakash, A.; Manikandan, P.; Ramesha, K.; Sathiya, M.; Tarascon, J.; Shukla, A. Solution-combustion synthesized nanocrystalline Li4Ti5O12 as high-rate performance Li-ion battery anode. Chem. Mater. 2020, 22, 2857–2863. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, N.; Sun, K. A novel grain restraint strategy to synthesize highly crystallized Li4Ti5O12 (~20 nm) for lithium ion batteries with superior high-rate performance. J. Mater. Chem. 2012, 22, 11688–11693. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, H.; Li, Z.; Wen, Y.; Xia, Q.; Zhang, Y.; Yushin, G. Revealing rate limitations in nanocrystalline Li4Ti5O12 anodes for high-power lithium ion batteries. Adv. Mater. Interfaces 2016, 3, 1600003. [Google Scholar] [CrossRef]
- Seo, J.S.; Na, B.K. Effects of Pluronic P123 addition and Cr3+ doping on electrochemical properties of Li4Ti5O12 anode for lithium ion batteries. Korean J. Chem. Eng 2021, 38, 1826–1833. [Google Scholar] [CrossRef]
- Saxena, S.; Sil, A. Role of calcination atmosphere in vanadium doped Li4Ti5O12 for lithium ion battery anode material. Mater. Res. Bull. 2017, 96, 449–457. [Google Scholar] [CrossRef]
- Ncube, N.M.; Mhlongo, W.T.; McCrindle, R.I.; Zheng, H. The electrochemical effect of Al-doping on Li4Ti5O12 as anode material for lithium-ion batteries. Mater. Today Proceed 2018, 5, 10592–10601. [Google Scholar] [CrossRef]
- Kahrizi, M.; Ghaffarinejad, A.; Daneshtalab, R. Preparation and effects of F-doping on electrochemical properties of Li4Ti5O12 as anode material for Li-ion battery. Ionics 2021, 27, 1929–1937. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, L.; Yang, W.; Yang, J.; Han, S.; Chen, D.; Liu, Y.; Liu, X. The Synergic Effects of Na and K Co-Doping on the Crystal Structure and Electrochemical Properties of Li4Ti5O12 as Anode Material for Lithium Ion Battery. Solid State Sci. 2015, 44, 39–44. [Google Scholar] [CrossRef]
- Hu, G.; Wu, J.; Du, K.; Peng, Z.; Jia, M.; Yang, H.; Cao, Y. Surface-fluorinated Li4Ti5O12 nanowires/reduced graphene oxide composite as a high-rate anode material for lithium ion batteries. Appl. Surf. Sci. 2019, 479, 158–166. [Google Scholar] [CrossRef]
- Ding, K.; Zhao, J.; Sun, Y.; Chen, Y.; Wei, B.; Zhang, Y.; Pan, J. Using potassium ferricyanide as a dopant to prepare K and Fe co-doped Li4Ti5O12. Ceram. Int. 2016, 42, 19187–19194. [Google Scholar] [CrossRef]
- Jeon, T.I.; Son, J.H.; An, K.H.; Lee, Y.H.; Lee, Y.S. Terahertz absorption and dispersion of fluorine-doped single-walled carbon nanotube. J. Appl. Phys. 2005, 98, 034316. [Google Scholar] [CrossRef]
- Lim, C.; Kwak, C.H.; Ko, Y.; Lee, Y.S. Mesophase pitch production from fluorine-pretreated FCC decant oil. Fuel 2022, 328, 125244. [Google Scholar] [CrossRef]
- Im, J.S.; Kim, J.G.; Lee, Y.S. Fluorination effects of carbon black additives for electrical properties and EMI shielding efficiency by improved dispersion and adhesion. Carbon 2009, 47, 2640–2647. [Google Scholar] [CrossRef]
- Kim, K.H.; Kim, M.J.; Kim, J.W.; Lee, K.M.; Kim, H.G.; Lee, Y.S. Enhanced creep behavior of carbon black/epoxy composites with high dispersion stability by fluorination. Carbon Lett. 2019, 29, 643–648. [Google Scholar] [CrossRef]
- Ha, S.; Lim, C.; Lee, Y.S. Fluorination methods and the properties of fluorinated carbon materials for use as lithium primary battery cathode materials. J. Ind. Eng. Chem. 2022, 111, 1–17. [Google Scholar] [CrossRef]
- Lee, S.E.; Kim, D.; Lee, M.Y.; Lee, M.K.; Jeong, E.; Lee, Y.S. Effect of Fluorination of Carbon Nanotubes on Physico-chemical and EMI Shielding Properties of Polymer Composites. Polymer 2015, 39, 114–121. [Google Scholar]
- Bi, X.; Li, Y.; Qiu, Z.; Liu, C.; Zhou, T.; Zhuo, S.; Zhou, J. Fluorinated Graphene Prepared by Direct Fluorination of N, O-Doped Graphene Aerogel at Different Temperatures for Lithium Primary Batteries. Materials 2018, 11, 1072. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wu, P. Fluorinated carbon nanotube/nanofibrillated cellulose composite film with enhanced toughness, superior thermal conductivity, and electrical insulation. ACS Appl. Mater. Interfaces 2018, 10, 34311–34321. [Google Scholar] [CrossRef]
- Kim, K.H.; Cho, J.H.; Hwang, J.U.; Im, J.S.; Lee, Y.S. A key strategy to form a LiF-based SEI layer for a lithium-ion battery anode with enhanced cycling stability by introducing a semi-ionic CF bond. J. Ind. Eng. Chem. 2021, 99, 48–54. [Google Scholar] [CrossRef]
- Feng, W.; Long, P.; Feng, Y.; Li, Y. Two-dimensional fluorinated graphene: Synthesis, structures, properties and applications. Adv. Sci. 2016, 3, 1500413. [Google Scholar] [CrossRef]
- Lee, Y.S.; Cho, T.H.; Lee, B.K.; Rho, J.S.; An, K.H.; Lee, Y.H. Surface properties of fluorinated single-walled carbon nanotubes. J. Fluor. Chem. 2003, 120, 99–104. [Google Scholar] [CrossRef]
- An, K.H.; Heo, J.G.; Jeon, K.G.; Bae, D.J.; Jo, C.; Yang, C.W.; Park, C.Y.; Chung, Y.S. X-ray photoemission spectroscopy study of fluorinated single-walled carbon nanotubes. Appl. Phys. Lett. 2002, 80, 4235–4237. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.; Wang, M.; Wang, S.; Na, J.; Bund, A.; Nanjundan, A.K.; Yamauchi, Y. Ultralong storage life of Li/MnO2 primary batteries using MnO2-(CFx) n with C–F semi-ionic bond as cathode materials. Electrochim. Acta 2019, 320, 134618. [Google Scholar] [CrossRef]
- Sharma, N.; Dubois, M.; Guérin, K.; Pischedda, V.; Radescu, S. Fluorinated (Nano) Carbons: CFx Electrodes and CFx-Based Batteries. Energy Technol. 2021, 9, 2000605. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, G.; Peng, H.; Chen, K. Hierarchical hollow microspheres assembled from N-doped carbon coated Li4Ti5O12 nanosheets with enhanced lithium storage properties. J. Mater. Chem. A 2013, 1, 15429–15434. [Google Scholar] [CrossRef]
- Campbell, B.; Ionescu, R.; Tolchin, M.; Ahmed, K.; Favors, Z.; Bozhilov, K.N.; Ozkan, C.S.; Ozkan, M. Carbon-coated, diatomite-derived nanosilicon as a high rate capable Li-ion battery anode. Sci. Rep. 2016, 6, 33050. [Google Scholar] [CrossRef] [Green Version]
Element Content (at.%) | |||
---|---|---|---|
C | F | O | |
MWCNTs | 97.42 | - | 2.58 |
F-MWCNTs_6 | 59.32 | 38.13 | 2.55 |
F-MWCNTs_12 | 53.64 | 43.83 | 2.54 |
Assignment | Binding Energy(eV) | Concentration (%) of Each Sample | ||
---|---|---|---|---|
MWCNTs | F-MWCNTs_6 | F-MWCNTs_12 | ||
C=C | 284.4 | 65.03 | 44.75 | 0.75 |
C-C | 285.2 | 26.88 | 20.04 | 1.19 |
C-O | 285.5 | 4.40 | 4.19 | 2.3 |
C=O | 286.6 | 3.69 | 3.30 | 3.5 |
Semi-ionic C–F | 288.8 | - | 25.20 | 11.84 |
C–F2 | 290 | - | 2.52 | 37.84 |
C–F3 | 294.5 | - | - | 42.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ha, S.; Jeong, S.G.; Lim, C.; Min, C.G.; Lee, Y.-S. Application of Thermally Fluorinated Multi-Wall Carbon Nanotubes as an Additive to an Li4Ti5O12 Lithium Ion Battery. Nanomaterials 2023, 13, 995. https://doi.org/10.3390/nano13060995
Ha S, Jeong SG, Lim C, Min CG, Lee Y-S. Application of Thermally Fluorinated Multi-Wall Carbon Nanotubes as an Additive to an Li4Ti5O12 Lithium Ion Battery. Nanomaterials. 2023; 13(6):995. https://doi.org/10.3390/nano13060995
Chicago/Turabian StyleHa, Seongmin, Seo Gyeong Jeong, Chaehun Lim, Chung Gi Min, and Young-Seak Lee. 2023. "Application of Thermally Fluorinated Multi-Wall Carbon Nanotubes as an Additive to an Li4Ti5O12 Lithium Ion Battery" Nanomaterials 13, no. 6: 995. https://doi.org/10.3390/nano13060995
APA StyleHa, S., Jeong, S. G., Lim, C., Min, C. G., & Lee, Y. -S. (2023). Application of Thermally Fluorinated Multi-Wall Carbon Nanotubes as an Additive to an Li4Ti5O12 Lithium Ion Battery. Nanomaterials, 13(6), 995. https://doi.org/10.3390/nano13060995