All-Tunicate Cellulose Film with Good Light Management Properties for High-Efficiency Organic Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Purification of Tunicate Cellulose
2.3. Fabrication of Tunicate MFC and CNF
2.4. Fabrication of Cellulose Films
2.5. Preparation of Organic Solar Cell Devices
2.6. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, L.; Kamal, M.R.; Rey, A.D. Light transmission and haze of polyethylene blown thin films. Polym. Eng. Sci. 2001, 41, 358–372. [Google Scholar] [CrossRef]
- Fang, Z.; Zhu, H.; Bao, W.; Preston, C.; Liu, Z.; Dai, J.; Li, Y.; Hu, L. Highly transparent paper with tunable haze for green electronics. Energy Environ. Sci. 2014, 7, 3313–3319. [Google Scholar] [CrossRef]
- Haug, F.J.; Ballif, C. Light management in thin film silicon solar cells. Energy Environ. Sci. 2015, 8, 824–837. [Google Scholar] [CrossRef]
- Yao, Y.; Tao, J.; Zou, J.; Zhang, B.; Li, T.; Dai, J.; Zhu, M.; Wang, S.; Fu, K.K.; Henderson, D.; et al. Light management in plastic–paper hybrid substrate towards high-performance optoelectronics. Energy Environ. Sci. 2016, 9, 2278–2285. [Google Scholar] [CrossRef]
- Wu, W.; Tassi, N.G.; Zhu, H.; Fang, Z.; Hu, L. Nanocellulose-based Translucent Diffuser for Optoelectronic Device Applications with Dramatic Improvement of Light Coupling. ACS Appl. Mater. Interfaces 2015, 7, 26860–26864. [Google Scholar] [CrossRef]
- Hu, L.; Zheng, G.; Yao, J.; Liu, N.; Weil, B.; Eskilsson, M.; Karabulut, E.; Ruan, Z.; Fan, S.; Bloking, J.T.; et al. Transparent and conductive paper from nanocellulose fibers. Energy Environ. Sci. 2013, 6, 513–518. [Google Scholar] [CrossRef]
- Zhu, M.; Li, T.; Davis, C.S.; Yao, Y.; Dai, J.; Wang, Y.; AlQatari, F.; Gilman, J.W.; Hu, L. Transparent and haze wood composites for highly efficient broadband light management in solar cells. Nano Energy 2016, 26, 332–339. [Google Scholar] [CrossRef]
- Wu, J.; Che, X.; Hu, H.-C.; Xu, H.; Li, B.; Liu, Y.; Li, J.; Ni, Y.; Zhang, X.; Ouyang, X. Organic solar cells based on cellulose nanopaper from agroforestry residues with an efficiency of over 16% and effectively wide-angle light capturing. J. Mater. Chem. A 2020, 8, 5442–5448. [Google Scholar] [CrossRef]
- Su, Z.; Yang, Y.; Huang, Q.; Chen, R.; Ge, W.; Fang, Z.; Huang, F.; Wang, X. Designed biomass materials for “green” electronics: A review of materials, fabrications, devices, and perspectives. Prog. Mater. Sci. 2022, 125, 100917. [Google Scholar] [CrossRef]
- Li, X.; Li, P.; Wu, Z.; Luo, D.; Yu, H.-Y.; Lu, Z.-H. Review and perspective of materials for flexible solar cells. Mater. Rep. Energy 2021, 1, 100001. [Google Scholar] [CrossRef]
- Hongsingthong, A.; Krajangsang, T.; Limmanee, A.; Sriprapha, K.; Sritharathikhun, J.; Konagai, M. Development of textured ZnO-coated low-cost glass substrate with very high haze ratio for silicon-based thin film solar cells. Thin Solid Film. 2013, 537, 291–295. [Google Scholar] [CrossRef] [Green Version]
- Giusti, G.; Consonni, V.; Puyoo, E.; Bellet, D. High performance ZnO-SnO(2):F nanocomposite transparent electrodes for energy applications. ACS Appl. Mater. Interfaces 2014, 6, 14096–14107. [Google Scholar] [CrossRef]
- Haghanifar, S.; Gao, T.; Rodriguez De Vecchis, R.T.; Pafchek, B.; Jacobs, T.D.B.; Leu, P.W. Ultrahigh-transparency, ultrahigh-haze nanograss glass with fluid-induced switchable haze. Optica 2017, 4, 1522–1525. [Google Scholar] [CrossRef]
- Park, J.Y.; Cho, W.S.; Choi, C.S.; Cho, S.H.; Lee, J.L. Embedding scattering centers in polymer substrate to yield robust hazy film with high optical transmittance: Application to virtual-reality display. Adv. Opt. Mater. 2020, 8, 1901866. [Google Scholar] [CrossRef]
- Haghanifar, S.; Tomasovic, L.M.; Galante, A.J.; Pekker, D.; Leu, P.W. Stain-resistant, superomniphobic flexible optical plastics based on nano-enoki mushroom-like structures. J. Mater. Chem. A 2019, 7, 15698–15706. [Google Scholar] [CrossRef]
- Haghanifar, S.; Galante, A.J.; Leu, P.W. Challenges and prospects of bio-inspired and multifunctional transparent substrates and barrier layers for optoelectronics. ACS Nano 2020, 14, 16241–16265. [Google Scholar] [CrossRef]
- Haghanifar, S.; Rodriguez De Vecchis, R.T.; Kim, K.J.; Wuenschell, J.; Sharma, S.P.; Lu, P.; Ohodnicki, P.; Leu, P.W. Flexible nanograss with highest combination of transparency and haze for optoelectronic plastic substrates. Nanotechnology 2018, 29, 42LT01. [Google Scholar] [CrossRef]
- Mecking, S. Nature or petrochemistry? biologically degradable materials. Angew. Chem. Int. Ed. Engl. 2004, 43, 1078–1085. [Google Scholar] [CrossRef] [Green Version]
- Hou, G.; Liu, Y.; Zhang, D.; Li, G.; Xie, H.; Fang, Z. Approaching theoretical haze of highly transparent all-cellulose composite films. ACS Appl. Mater. Interfaces 2020, 12, 31998–32005. [Google Scholar] [CrossRef]
- Jia, C.; Li, T.; Chen, C.; Dai, J.; Kierzewski, I.M.; Song, J.; Li, Y.; Yang, C.; Wang, C.; Hu, L. Scalable, anisotropic transparent paper directly from wood for light management in solar cells. Nano Energy 2017, 36, 366–373. [Google Scholar] [CrossRef]
- Hou, G.; Li, G.; Chen, H.; Fang, Z. Rapid preparation of highly transparent paper with high built-in haze by an ion exchange approach. Chem. Eng. J. 2022, 439, 135776. [Google Scholar] [CrossRef]
- Hu, Y.; Hu, F.; Gan, M.; Xie, Y.; Feng, Q. Facile one-step fabrication of all cellulose composites with unique optical performance from wood and bamboo pulp. Carbohydr. Polym. 2021, 274, 118630. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Fang, Z.; Wang, Z.; Dai, J.; Yao, Y.; Shen, F.; Preston, C.; Wu, W.; Peng, P.; Jang, N.; et al. Extreme light management in mesoporous wood cellulose paper for optoelectronics. ACS Nano 2016, 10, 1369–1377. [Google Scholar] [CrossRef] [PubMed]
- Dinesh, G.; Kandasubramanian, B. Fabrication of transparent paper devices from nanocellulose fiber. Mater. Chem. Phys. 2022, 281, 125707. [Google Scholar] [CrossRef]
- Fang, Z.; Zhu, H.; Yuan, Y.; Ha, D.; Zhu, S.; Preston, C.; Chen, Q.; Li, Y.; Han, X.; Lee, S.; et al. Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett. 2014, 14, 765–773. [Google Scholar] [CrossRef]
- Yang, W.; Jiao, L.; Liu, W.; Deng, Y.; Dai, H. Morphology control for tunable optical properties of cellulose nanofibrils films. Cellulose 2018, 25, 5909–5918. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, J. Excellent chemical and material cellulose from tunicates: Diversity in cellulose production yield and chemical and morphological structures from different tunicate species. Cellulose 2014, 21, 3427–3441. [Google Scholar] [CrossRef]
- Zhao, Y.; Moser, C.; Lindstrom, M.E.; Henriksson, G.; Li, J. Cellulose nanofibers from softwood, hardwood, and tunicate: Preparation-structure-film performance interrelation. ACS Appl. Mater. Interfaces 2017, 9, 13508–13519. [Google Scholar] [CrossRef]
- Lv, X.; Han, J.; Liu, M.; Yu, H.; Liu, K.; Yang, Y.; Sun, Y.; Pan, P.; Liang, Z.; Chang, L.; et al. Overview of preparation, modification, and application of tunicate-derived nanocellulose. Chem. Eng. J. 2023, 452, 139439. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Lindstrom, M.E.; Li, J. Tunicate cellulose nanocrystals: Preparation, neat films and nanocomposite films with glucomannans. Carbohydr. Polym. 2015, 117, 286–296. [Google Scholar] [CrossRef]
- Quero, F.; Opazo, G.; Zhao, Y.; Feschotte-Parazon, A.; Fernandez, J.; Quintro, A.; Flores, M. Top-down approach to produce protein functionalized and highly thermally stable cellulose fibrils. Biomacromolecules 2018, 19, 3549–3559. [Google Scholar] [CrossRef]
- Dunlop, M.J.; Clemons, C.; Reiner, R.; Sabo, R.; Agarwal, U.P.; Bissessur, R.; Sojoudiasli, H.; Carreau, P.J.; Acharya, B. Towards the scalable isolation of cellulose nanocrystals from tunicates. Sci. Rep. 2020, 10, 19090. [Google Scholar] [CrossRef]
- Funahashi, R.; Okita, Y.; Hondo, H.; Zhao, M.; Saito, T.; Isogai, A. Different conformations of surface cellulose molecules in native cellulose microfibrils revealed by layer-by-layer peeling. Biomacromolecules 2017, 18, 3687–3694. [Google Scholar] [CrossRef]
- Moon, S.M.; Heo, J.E.; Jeon, J.; Eom, T.; Jang, D.; Her, K.; Cho, W.; Woo, K.; Wie, J.J.; Shim, B.S. High crystallinity of tunicate cellulose nanofibers for high-performance engineering films. Carbohydr. Polym. 2021, 254, 117470. [Google Scholar] [CrossRef]
- Segal, L.G.C.J.J.; Martin, A.E.J.; Conrad, C.M. An empirical method for estimating the degree of crystallinity of native cellulose using the X-day diffractometer. Text. Res. J. 1959, 29, 786–794. [Google Scholar] [CrossRef]
- Song, G.; Delroisse, J.; Schoenaers, D.; Kim, H.; Nguyen, T.C.; Horbelt, N.; Leclere, P.; Hwang, D.S.; Harrington, M.J.; Flammang, P. Structure and composition of the tunic in the sea pineapple Halocynthia roretzi: A complex cellulosic composite biomaterial. Acta. Biomater. 2020, 111, 290–301. [Google Scholar] [CrossRef]
- Sacui, I.A.; Nieuwendaal, R.C.; Burnett, D.J.; Stranick, S.J.; Jorfi, M.; Weder, C.; Foster, E.J.; Olsson, R.T.; Gilman, J.W. Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl. Mater. Interfaces 2014, 6, 6127–6138. [Google Scholar] [CrossRef]
- Tang, Z.; Li, W.; Lin, X.; Xiao, H.; Miao, Q.; Huang, L.; Chen, L.; Wu, H. Tempo-Oxidized cellulose with high degree of oxidation. Polymers 2017, 9, 421. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Bollström, R.; Yang, A.; Chen, Q.; Chen, G.; Salminen, P.; Bousfield, D.; Toivakka, M. Comparison of nano and microfibrillated cellulose films. Cellulose 2014, 21, 3443–3456. [Google Scholar] [CrossRef]
- Preston, C.; Xu, Y.; Han, X.; Munday, J.N.; Hu, L. Optical haze of transparent and conductive silver nanowire films. Nano Res. 2013, 6, 461–468. [Google Scholar] [CrossRef]
- Cattin, L.; Bernède, J.C.; Morsli, M. Toward indium-free optoelectronic devices: Dielectric/metal/dielectric alternative transparent conductive electrode in organic photovoltaic cells. Phys. Status Solidi (A) 2013, 210, 1047–1061. [Google Scholar] [CrossRef]
- Zhu, H.; Parvinian, S.; Preston, C.; Vaaland, O.; Ruan, Z.; Hu, L. Transparent nanopaper with tailored optical properties. Nanoscale 2013, 5, 3787–3792. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Chen, G.; Liu, Y.; Liu, Y.; Li, B.; Fang, Z. Transparent and hazy all-cellulose composite films with superior mechanical properties. ACS Sustain. Chem. Eng. 2018, 6, 6974–6980. [Google Scholar] [CrossRef]
- Fang, Z.; Zhu, H.; Preston, C.; Han, X.; Li, Y.; Lee, S.; Chai, X.; Chen, G.; Hu, L. Highly transparent and writable wood all-cellulose hybrid nanostructured paper. J. Mater. Chem. C 2013, 1, 6191–6197. [Google Scholar] [CrossRef]
- Kim, H.-J.; Roy, S.; Rhim, J.-W. Effects of various types of cellulose nanofibers on the physical properties of the CNF-based films. J. Environ. Chem. Eng. 2021, 9, 106043. [Google Scholar] [CrossRef]
- Zhao, W.; Qian, D.; Zhang, S.; Li, S.; Inganas, O.; Gao, F.; Hou, J. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv. Mater. 2016, 28, 4734–4739. [Google Scholar] [CrossRef]
Samples | N (%) | C (%) | H (%) | S (%) | Protein (%) |
---|---|---|---|---|---|
Tunic | 4.28 | 37.48 | 4.698 | 2.814 | 26.75 |
Tunicate cellulose | 0.14 | 40.34 | 4.588 | 1.141 | 0.88 |
Samples | Open-Circuit Voltage (Voc) [V] | Short-Circuit Current Density (Jsc) [mA cm−2] | Fill Factor (FF) [%] | Power Conversion Efficiency (PCE) [%] |
---|---|---|---|---|
Solar cell | 0.901 ± 0.002 | 17.001 ± 0.250 | 69.3 ± 1.0 | 10.71 ± 0.124 |
Solar cell with film | 0.901 ± 0.002 | 18.375 ± 0.492 | 68.9 ± 1.3 | 11.41 ± 0.254 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, C.; Wu, M.; Zhang, F.; Liu, C.; Sun, M.; Li, B. All-Tunicate Cellulose Film with Good Light Management Properties for High-Efficiency Organic Solar Cells. Nanomaterials 2023, 13, 1221. https://doi.org/10.3390/nano13071221
Jiang C, Wu M, Zhang F, Liu C, Sun M, Li B. All-Tunicate Cellulose Film with Good Light Management Properties for High-Efficiency Organic Solar Cells. Nanomaterials. 2023; 13(7):1221. https://doi.org/10.3390/nano13071221
Chicago/Turabian StyleJiang, Chen, Meiyan Wu, Fang Zhang, Chao Liu, Mingliang Sun, and Bin Li. 2023. "All-Tunicate Cellulose Film with Good Light Management Properties for High-Efficiency Organic Solar Cells" Nanomaterials 13, no. 7: 1221. https://doi.org/10.3390/nano13071221
APA StyleJiang, C., Wu, M., Zhang, F., Liu, C., Sun, M., & Li, B. (2023). All-Tunicate Cellulose Film with Good Light Management Properties for High-Efficiency Organic Solar Cells. Nanomaterials, 13(7), 1221. https://doi.org/10.3390/nano13071221