Bi2MoO6 Embedded in 3D Porous N,O-Doped Carbon Nanosheets for Photocatalytic CO2 Reduction
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of the Ultra-Thin NO-C Nanosheets
2.2. Preparation of BMO/NO-C Composites
3. Results and Discussions
3.1. Preparation and Material Characterization
3.2. Photocatalytic CO2 Reduction
3.3. Photocatalytic CO2 Reduction Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xia, Y.; Zhang, L.; Hu, B.; Yu, J.; Al-Ghamdi, A.A.; Wageh, S. Design of highly-active photocatalytic materials for solar fuel production. Chem. Eng. J. 2021, 421, 127732. [Google Scholar] [CrossRef]
- Guo, K.; Hussain, I.; Jie, G.A.; Fu, Y.; Zhang, F.; Zhu, W. Strategies for improving the photocatalytic performance of metal-organic frameworks for CO2 reduction: A review. J. Environ. Sci. 2023, 125, 290–308. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.-Y.; Si, Y.-N.; Wang, Q.-Y.; Wang, S.; Zang, S.-Q. Integrating Single Atoms with Different Microenvironments into One Porous Organic Polymer for Efficient Photocatalytic CO2 Reduction. Adv. Mater. 2021, 33, 2101568. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.H.; Kim, D.; Hiragond, C.B.; Lee, J.; Jung, J.-W.; Cho, C.-H.; In, I.; In, S.-I. Phase-controlled 1T/2H-MoS2 interaction with reduced TiO2 for highly stable photocatalytic CO2 reduction into CO. J. CO2 Util. 2023, 67, 102324. [Google Scholar] [CrossRef]
- Chauhan, D.K.; Sharma, N.; Kailasam, K. A critical review on emerging photocatalysts for syngas generation via CO2 reduction under aqueous media: A sustainable paradigm. Mater. Adv. 2022, 3, 5274–5298. [Google Scholar] [CrossRef]
- Feng, Y.-X.; Dong, G.-X.; Su, K.; Liu, Z.-L.; Zhang, W.; Zhang, M.; Lu, T.-B. Self-template-oriented synthesis of lead-free perovskite Cs3Bi2I9 nanosheets for boosting photocatalysis of CO2 reduction over Z-scheme heterojunction Cs3Bi2I9/CeO2. J. Energy Chem. 2022, 69, 348–355. [Google Scholar] [CrossRef]
- Tang, Z.; He, W.; Wang, Y.; Wei, Y.; Yu, X.; Xiong, J.; Wang, X.; Zhang, X.; Zhao, Z.; Liu, J. Ternary heterojunction in rGO-coated Ag/Cu2O catalysts for boosting selective photocatalytic CO2 reduction into CH4. Appl. Catal. B Environ. 2022, 311, 121371. [Google Scholar] [CrossRef]
- Wan, Z.; Wang, J.; Wang, K.; Hu, M.; Wang, X. Photocatalytic reduction of CO2 with H2O vapor into solar fuels over Ni modified porous In2O3 nanosheets. Catal. Today 2021, 374, 44–52. [Google Scholar] [CrossRef]
- Skorjanc, T.; Kamal, K.M.; Alkhoori, A.; Mali, G.; Mohammed, A.K.; Asfari, Z.; Polychronopoulou, K.; Likozar, B.; Trabolsi, A.; Shetty, D. Polythiacalixarene-Embedded Gold Nanoparticles for Visible-Light-Driven Photocatalytic CO2 Reduction. ACS Appl. Mater. Interfaces 2022, 14, 30796–30801. [Google Scholar] [CrossRef]
- Phuong, P.T.T.; Vo, D.-V.N.; Duy, N.P.H.; Pearce, H.; Tsikriteas, Z.M.; Roake, E.; Bowen, C.; Khanbareh, H. Piezoelectric catalysis for efficient reduction of CO2 using lead-free ferroelectric particulates. Nano Energy 2022, 95, 107032. [Google Scholar] [CrossRef]
- Meng, J.; Duan, Y.; Jing, S.; Ma, J.; Wang, K.; Zhou, K.; Ban, C.; Wang, Y.; Hu, B.; Yu, D.; et al. Facet junction of BiOBr nanosheets boosting spatial charge separation for CO2 photoreduction. Nano Energy 2022, 92, 106671. [Google Scholar] [CrossRef]
- Xue, M.L.; Meng, F.M.; Ma, Y.R.; Zhou, S.W. Growing of ultra-thin Bi2MoO6 nanoflowers on Co/N-doped graphitic carbon nanoshells as attractive custom supports: Excellent photocatalytic degradation activity for pollutants. Appl. Surf. Sci. 2023, 613, 156100. [Google Scholar] [CrossRef]
- Liu, L.L.; Wu, D.H.; Zhang, L.; Feng, J.J.; Wang, A.J. FeCo alloy entrapped in N-doped graphitic carbon nanotubes-onnanosheets prepared by coordination-induced pyrolysis for oxygen reduction reaction and rechargeable Zn-air battery. J. Colloid Interface Sci. 2023, 639, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Bai, Y.; Liu, M.; Li, Y.; Yang, H.; Wang, X.; Wu, C. Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials. Energy Environ. Sci. 2021, 14, 2036–2089. [Google Scholar] [CrossRef]
- Liu, M.; Lu, X.Q.; Guo, C.; Wang, Z.J.; Li, Y.P.; Lin, Y.; Zhou, Y.; Wang, S.T.; Zhang, J. Architecting a Mesoporous N-Doped Graphitic Carbon Framework Encapsulating CoTe2 as an Efficient Oxygen Evolution Electrocatalyst. ACS Appl. Mater. Interfaces 2017, 9, 36146–36153. [Google Scholar] [CrossRef]
- Wang, B.L.; Shi, F.; Sun, Y.X.; Yan, L.J.; Zhang, X.P.; Wang, B.; Sun, W. Ni-enhanced molybdenum carbide loaded N-doped graphitized carbon as bifunctional electrocatalyst for overall water splitting. Appl. Surf. Sci. 2022, 572, 151480. [Google Scholar] [CrossRef]
- Wang, B.; Gu, L.; Yuan, F.; Zhang, D.; Sun, H.L.; Wang, J.; Wang, Q.J.; Wang, H.; Li, Z.J. Edge-enrich N-doped graphitic carbon: Boosting rate capability and cyclability for potassium ion battery. Chem. Eng. J. 2022, 432, 134321. [Google Scholar] [CrossRef]
- Filippi, J.; Miller, H.A.; Nasi, L.; Pagliaro, M.V.; Marchionni, A.; Melchionna, M.; Fornasiero, P.; Vizza, F. Optimization of H2O2 production in a small-scale off-grid buffer layer flow cell equipped with Cobalt@N-doped graphitic carbon core–shell nanohybrid electrocatalyst. Mater. Today Energy 2022, 29, 101092. [Google Scholar] [CrossRef]
- Liu, D.; Jiang, Z.; Lin, Y.; Zheng, J. S-Scheme Photocatalytic Mechanism of Type-I Band Alignment in α-In2Se3/g-C3N4 Heterostructure. Phys. Status Solidi RRL 2021, 15, 2100241. [Google Scholar] [CrossRef]
- Georgieva, A.K.; Nilsson, D.; Stattin, M.; Forsberg, U.; Haglund, A.; Larsson, A.; Janzén, E. Mg-doped Al0.85Ga0.15N layers grown by hot-wall MOCVD with low resistivity at room temperature. Phys. Stat. Sol. 2010, 4, 311–313. [Google Scholar]
- Lundgren, C.; Georgieva, A.K.; Gueorguiev, G.K. A perspective on thermal stability and mechanical properties of 2D Indium Bismide from ab initio molecular dynamics. Nanotechnology 2022, 33, 335706. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Fabrication of Bi2MoO6/ZnO hierarchical heterostructures with enhanced visible-light photocatalytic activity. Appl. Catal. B Environ. 2019, 250, 313–324. [Google Scholar] [CrossRef]
- He, L.; Zhang, W.Y.; Liu, S.; Zhao, Y. Three-dimensional porous N-doped graphitic carbon framework with embedded CoO for photocatalytic CO2 reduction. Appl. Catal. B-Environ. 2021, 298, 120546. [Google Scholar] [CrossRef]
- He, L.; Zhang, W.; Zhao, K.; Liu, S.; Zhao, Y. Core-shell Cu@Cu2O nanoparticles embedded in 3D honeycomb-like N-doped graphitic carbon for photocatalytic CO2 reduction. J. Mater. Chem. A 2022, 10, 4758–4769. [Google Scholar] [CrossRef]
- He, L.; Lv, H.; Ma, L.; Li, W.; Si, J.; Ikram, M.; Ullah, M.; Wu, H.; Wang, R.; Shi, K. Controllable synthesis of intercalated γ-Bi2MoO6/graphene nanosheet composites for high performance NO2 gas sensor at room temperature. Carbon 2020, 157, 22–32. [Google Scholar] [CrossRef]
- Al-Hada, N.M.; Saion, E.; Kamari, H.M.; Flaifel, M.H.; Shaari, A.H.; Talib, Z.A.; Abdullahi, N.; Baqer, A.A.; Kharazmi, A. Structural, morphological and optical behaviour of PVP capped binary (ZnO)(0.4) (CdO)(0.6) nanoparticles synthesised by a facile thermal route. Mater. Sci. Semicond. Process. 2016, 53, 56–65. [Google Scholar] [CrossRef]
- Anju; Yadav, R.S.; Pötschke, P.; Pionteck, J.; Krause, B.; Kuřitka, I.; Vilcakova, J.; Skoda, D.; Urbánek, P.; Machovsky, M.; et al. High-Performance, Lightweight, and Flexible Thermoplastic Polyurethane Nanocomposites with Zn2+-Substituted CoFe2O4 Nanoparticles and Reduced Graphene Oxide as Shielding Materials against Electromagnetic Pollution. ACS Omega 2021, 6, 28098–28118. [Google Scholar] [CrossRef]
- Zheng, Y.Y.; He, L.; Kong, X.R.; Song, Y.; Zhao, Y. Three-dimensional porous N-doped graphite carbon with embedded CoS2 nanoparticles as advanced anode for sodium-ion batteries. Appl. Surf. Sci. 2022, 603, 154481. [Google Scholar] [CrossRef]
- Wang, Y.; Di, X.; Lu, Z.; Cheng, R.; Wu, X.; Gao, P. Controllable heterogeneous interfaces of cobalt/carbon nanosheets/rGO composite derived from metal-organic frameworks for high-efficiency microwave attenuation. Carbon 2022, 187, 404–414. [Google Scholar] [CrossRef]
- Sharma, M.; Rani, S.; Pathak, D.K.; Bhatia, R.; Kumar, R.; Sameera, I. Temperature dependent Raman modes of reduced graphene oxide: Effect of anharmonicity, crystallite size and defects. Carbon 2021, 184, 437–444. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, H.; Zhang, X.; Jiang, H.; Geng, X.; Li, S.; Tu, H.; Cheng, X.; Yang, P.; Wan, Y. High-absorption solar steam device comprising Au@Bi2MoO6-CDs: Extraordinary desalination and electricity generation. Nano Energy 2020, 68, 104298. [Google Scholar] [CrossRef]
- Chen, S.; Feng, W.J.; Geng, Q.; Dong, F.; Wang, H.Q.; Wu, Z.B. A new strategy for plasma-catalytic reduction of NO to N2 on the surface of modified Bi2MoO6. Chem. Eng. J. 2022, 440, 135754. [Google Scholar] [CrossRef]
- Liu, Z.P.; Tai, Y.H.; Liu, J.M.; Liu, F.Y.; Han, B.Y.; Fu, W.; Yang, X.Y.; Xie, H.J.; Liu, Q.F. A novel mechanism for visible-light degradation of phenol by oxygen vacancy Bi2MoO6 homojunction. Appl. Surf. Sci. 2022, 605, 154671. [Google Scholar] [CrossRef]
- Bai, X.; Liu, Z.; Lv, H.; Chen, J.; Khan, M.; Wang, J.; Sun, B.; Zhang, Y.; Kan, K.; Shi, K. N-doped three-dimensional needle-like CoS2 bridge connection Co3O4 core–shell structure as high-efficiency room temperature NO2 gas sensor. J. Hazard. Mater. 2022, 423, 127120. [Google Scholar] [CrossRef]
- Yu, T.; Li, Z.; Chen, S.; Ding, Y.; Chen, W.; Liu, X.; Huang, Y.; Kong, F. Facile Synthesis of Flowerlike Bi2MoO6 Hollow Microspheres for High-Performance Supercapacitors. ACS Sustain. Chem. Eng. 2018, 6, 7355–7361. [Google Scholar] [CrossRef]
- He, L.; Zhang, W.; Lv, F.; Kong, X.; Zheng, Y.; Song, Y.; Zhao, Y. CoFe alloy nanoparticles encapsulated in a 3D honeycomb-like N-doped graphitic carbon framework for photocatalytic CO2 reduction. J. Mater. Chem. A 2022, 10, 22093–22104. [Google Scholar] [CrossRef]
- Wang, B.L.; Ai, Y.J.; Yao, Y.C.; Jiang, M.; Yan, L.J.; Xu, S.G.; Sun, W. Electrochemical synergy between FeNi nanoalloy@tungsten carbide on N-doped graphitized carbon layers as an excellent electrocatalyst for oxygen evolution reaction. Electrochim. Acta 2022, 415, 140254. [Google Scholar] [CrossRef]
- Suzuki, T.M.; Yoshino, S.; Sekizawa, K.; Yamaguchi, Y.; Kudo, A.; Morikawa, T. Photocatalytic CO2 reduction by a Z-scheme mechanism in an aqueous suspension of particulate (CuGa)0.3Zn1.4S2, BiVO4 and a Co complex operating dual-functionally as an electron mediator and as a cocatalyst. Appl. Catal. B Environ. 2022, 316, 121600. [Google Scholar] [CrossRef]
- Wang, Z.; Fan, J.; Cheng, B.; Yu, J.; Xu, J. Nickel-based cocatalysts for photocatalysis: Hydrogen evolution, overall water splitting and CO2 reduction. Mater. Today Phys. 2020, 15, 100279. [Google Scholar] [CrossRef]
- Gao, W.H.; Li, G.; Wang, Q.W.; Zhang, L.J.; Wang, K.; Pang, S.X.; Zhang, G.M.; Lv, L.Y.; Liu, X.Y.; Gao, W.F.; et al. Ultrathin porous Bi2WO6 with rich oxygen vacancies for promoted adsorption-photocatalytic tetracycline degradation. Chem. Eng. J. 2023, 464, 142694. [Google Scholar] [CrossRef]
- Cai, W.; Yu, X.; Cao, Y.; Hu, C.; Wang, Y.; Zhao, Y.; Bu, Y. Electron-coupled enhanced interfacial interaction of Ce-MOF/Bi2MoO6 heterostructure for boosted photoreduction CO2. J. Environ. Chem. Eng. 2022, 10, 107461. [Google Scholar] [CrossRef]
- Li, B.; Lai, C.; Zhang, M.; Liu, S.; Yi, H.; Liu, X.; An, N.; Zhou, X.; Li, L.; Fu, Y.; et al. N, S-GQDs and Au nanoparticles co-modified ultrathin Bi2MoO6 nanosheet with enhanced charge transport dynamics for full-spectrum-light-driven molecular oxygen activation. Chem. Eng. J. 2021, 409, 128281. [Google Scholar] [CrossRef]
- Xue, Y.; Tang, W.; Gu, H.; Wei, M.; Guo, E.; Lu, Q.; Pang, Y. Flexible Bi2MoO6/N-doped carbon nanofiber membrane enables tetracycline photocatalysis for environmentally safe growth of Vigna radiata. J. Alloys Compd. 2022, 902, 163860. [Google Scholar] [CrossRef]
- Li, P.; Wang, H.L.; Tan, X.H.; Hu, W.; Huang, M.H.; Shi, J.; Chen, J.W.; Liu, S.; Shi, Z.C.; Li, Z. Bifunctional electrocatalyst with CoN3 active sties dispersed on N-doped graphitic carbon nanosheets for ultrastable Zn-air batteries. Appl. Catal. B Environ. 2022, 316, 121674. [Google Scholar] [CrossRef]
- Alhokbany, N.; Ahamad, T.; Alshehri, S.M. Fabrication of highly porous ZnO/Ag2O nanoparticles embedded in N-doped graphitic carbon for photocatalytic degradation of tetracycline. J. Environ. Chem. Eng. 2022, 10, 107681. [Google Scholar] [CrossRef]
- Wang, G.; Sun, X.; Bai, J.; Han, L. Preparation of Fe-C nanofiber composites by metal organic complex and potential application in supercapacitors. J. Mater. Sci. Mater. Electron. 2019, 30, 4665–4675. [Google Scholar] [CrossRef]
- Ikram, M.; Liu, Y.; Lv, H.; Liu, L.; Rehman, A.U.; Kan, K.; Zhang, W.; He, L.; Wang, Y.; Wang, R.; et al. 3D-multilayer MoS2 nanosheets vertically grown on highly mesoporous cubic In2O3 for high-performance gas sensing at room temperature. Appl. Surf. Sci. 2019, 466, 1–11. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Ikram, M.; Lv, H.; Chang, J.; Li, Z.; Ma, L.; Rehman, A.; Lu, G.; Chen, J. Facile Synthesis of Highly Dispersed Co3O4 Nanoparticles on Expanded, Thin Black Phosphorus for a ppb-Level NOx Gas Sensor. ACS Sens. 2018, 3, 1576–1583. [Google Scholar] [CrossRef]
- Chen, H.; You, S.; Ma, Y.; Zhang, C.; Jing, B.; Cai, Z.; Tang, B.; Ren, N.; Zou, J. Carbon Thin-Layer-Protected Active Sites for ZIF-8-Derived Nitrogen-Enriched Carbon Frameworks/Expanded Graphite as Metal-Free Catalysts for Oxygen Reduction in Acidic Media. Chem. Mater. 2018, 30, 6014–6025. [Google Scholar] [CrossRef]
- He, L.; Zhang, W.; Liu, S.; Zhao, Y. Three-dimensional palm frondlike Co3O4@NiO/graphitic carbon composite for photocatalytic CO2 reduction. J. Alloys Compd. 2023, 934, 168053. [Google Scholar] [CrossRef]
- Yu, B.; Wu, Y.; Meng, F.; Wang, Q.; Jia, X.; Khan, M.W.; Huang, C.; Zhang, S.; Yang, L.; Wu, H. Formation of hierarchical Bi2MoO6/ln2S3 S-scheme heterojunction with rich oxygen vacancies for boosting photocatalytic CO2 reduction. Chem. Eng. J. 2022, 429, 132456. [Google Scholar] [CrossRef]
- Ko, D.; Jin, X.; Seong, K.-D.; Yan, B.; Chai, H.; Kim, J.M.; Hwang, M.; Choi, J.; Zhang, W.; Piao, Y. Few-layered MoS2 vertically aligned on 3D interconnected porous carbon nanosheets for hydrogen evolution. Appl. Catal. B Environ. 2019, 248, 357–365. [Google Scholar] [CrossRef]
- Li, H.; Jian, L.; Chen, Y.; Wang, G.; Lyu, J.; Dong, X.; Liu, X.; Ma, H. Fabricating Bi2MoO6@Co3O4 core–shell heterogeneous architectures with Z-scheme for superior photoelectrocatalytic water purification. Chem. Eng. J. 2022, 27, 131716. [Google Scholar] [CrossRef]
- Huo, Y.; Zhang, J.; Dai, K.; Liang, C. Amine-Modified S-Scheme Porous g-C3N4/CdSe–Diethylenetriamine Composite with Enhanced Photocatalytic CO2 Reduction Activity. ACS Appl. Energy Mater. 2021, 4, 956–968. [Google Scholar] [CrossRef]
- Xu, D.; Cheng, B.; Wang, W.; Jiang, C.; Yu, J. Ag2CrO4/g-C3N4/graphene oxide ternary nanocomposite Z-scheme photocatalyst with enhanced CO2 reduction activity. Appl. Catal. B Environ. 2018, 231, 368–380. [Google Scholar] [CrossRef]
- Di, T.; Zhu, B.; Cheng, B.; Yu, J.; Xu, J. A direct Z-scheme g-C3N4/SnS2 photocatalyst with superior visible-light CO2 reduction performance. J. Catal. 2017, 352, 532–541. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Liu, N.Y.; Han, Y.Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S.T.; Zhong, J.; Kang, Z.H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974. [Google Scholar] [CrossRef]
- Teng, Y.L.; Xu, Y.M.; Cheng, X.L.; Gao, S.; Zhang, X.F.; Zhao, H.; Huo, L.H. Lonicerae flos-derived N, S co-doped graphitized carbon uniformly embedded with FeS2 nanoparticles as anode materials for high performance lithium ion batteries. J. Alloys Compd. 2022, 909, 164707. [Google Scholar] [CrossRef]
- Liu, M.X.; Zhang, J.J.; Cui, F.; Yan, Y.Q.; Cui, T.Y. Synergized Ni/NiOx heterojunction encapsulated by N-doped graphitized carbon core@shell electrocatalyst for efficient hydrogen production. Mater. Lett. 2022, 327, 133043. [Google Scholar] [CrossRef]
- Ma, C.; Xie, Z.; Seo, W.C.; Din, S.T.U.; Lee, J.; Kim, Y.; Jung, H.; Yang, W. Carbon dot-coupled BiVO4/reduced graphene hydrogel for significant enhancement of photocatalytic activity: Antibiotic degradation and CO2 reduction. Appl. Surf. Sci. 2021, 565, 150564. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiao, W.; Xie, Y.; He, F.; Ling, Y.; Yang, Q.; Zhao, J.; Ye, H.; Hou, Y. Enhanced photocatalytic CO2-reduction activity to form CO and CH4 on S-scheme heterostructured ZnFe2O4/Bi2MoO6 photocatalyst. J. Colloid Interface Sci. 2022, 608, 2213–2223. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yang, D.H.; Wang, X.Y.; Zhang, J.W.; Han, B.H. N-doped graphitic carbon shell-encapsulated FeCo alloy derived from metal–polyphenol network and melamine sponge for oxygen reduction, oxygen evolution, and hydrogen evolution reactions in alkaline media. J. Colloid Interface Sci. 2021, 581, 362–373. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.P.; Qi, H.Q.; Mao, S.Q.; Sun, Z.R. Atrazine removal by peroxymonosulfate activated with magnetic CoFe alloy@N-doped graphitic carbon encapsulated in chitosan carbonized microspheres. Chem. Eng. J. 2021, 423, 130169. [Google Scholar] [CrossRef]
- Yu, Y.; You, S.J.; Du, J.N.; Zhang, P.; Dai, Y.; Liu, M.Y.; Jiang, B.J.; Ren, N.Q.; Zou, J.L. Ti3+-self-doped TiO2 with multiple crystal-phases anchored on acid-pickled ZIF-67-derived Co3O4@N-doped graphitized-carbon as a durable catalyst for oxygen reduction in alkaline and acid media. Chem. Eng. J. 2021, 403, 126441. [Google Scholar] [CrossRef]
- Yin, G.; Qi, X.; Chen, Y.; Peng, Q.; Jiang, X.; Wang, Q.; Zhang, W.; Gong, X. Constructing an all zero-dimensional CsPbBr3/CdSe heterojunction for highly efficient photocatalytic CO2 reduction. J. Mater. Chem. A 2022, 10, 22468–22476. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, X.; He, L.; Zhang, W.; Lv, F.; Zheng, Y.; Kong, X.; Wang, D.; Zhao, Y. Bi2MoO6 Embedded in 3D Porous N,O-Doped Carbon Nanosheets for Photocatalytic CO2 Reduction. Nanomaterials 2023, 13, 1569. https://doi.org/10.3390/nano13091569
Bai X, He L, Zhang W, Lv F, Zheng Y, Kong X, Wang D, Zhao Y. Bi2MoO6 Embedded in 3D Porous N,O-Doped Carbon Nanosheets for Photocatalytic CO2 Reduction. Nanomaterials. 2023; 13(9):1569. https://doi.org/10.3390/nano13091569
Chicago/Turabian StyleBai, Xue, Lang He, Wenyuan Zhang, Fei Lv, Yayun Zheng, Xirui Kong, Du Wang, and Yan Zhao. 2023. "Bi2MoO6 Embedded in 3D Porous N,O-Doped Carbon Nanosheets for Photocatalytic CO2 Reduction" Nanomaterials 13, no. 9: 1569. https://doi.org/10.3390/nano13091569
APA StyleBai, X., He, L., Zhang, W., Lv, F., Zheng, Y., Kong, X., Wang, D., & Zhao, Y. (2023). Bi2MoO6 Embedded in 3D Porous N,O-Doped Carbon Nanosheets for Photocatalytic CO2 Reduction. Nanomaterials, 13(9), 1569. https://doi.org/10.3390/nano13091569