Exploring the Remarkably High Photocatalytic Efficiency of Ultra-Thin Porous Graphitic Carbon Nitride Nanosheets
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
- I.
- Optical properties:
- II.
- Chemical properties:
- III.
- Surface properties:
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shi, Y.; Zhao, Q.; Li, J.; Gao, G.; Zhi, J. Onion-Liked Carbon-Embedded Graphitic Carbon Nitride for Enhanced Photocatalytic Hydrogen Evolution and Dye Degradation. Appl. Catal. B Environ. 2022, 308, 121216. [Google Scholar] [CrossRef]
- Li, X.; Wu, J.; An, S.; Li, K.; Zhang, J.; Pei, M.; Song, C.; Guo, X. Ultrathin Crystalline Carbon Nitride Nanosheets for Highly Efficient Photocatalytic Pollutant Removal and Hydrogen Production. ACS Appl. Nano Mater. 2023, 6, 11601–11611. [Google Scholar] [CrossRef]
- Gaikwad, R.P.; Naikwadi, D.R.; Biradar, A.V.; Gawande, M.B. Photocatalytic One-Pot Conversion of Aldehydes to Esters and Degradation of Rhodamine B Dye Using Mesoporous Graphitic Carbon Nitride. ACS Appl. Nano Mater. 2023, 6, 1859–1869. [Google Scholar] [CrossRef]
- Zhao, C.; Sun, H.; Li, C.; Wang, M.; Wu, J.; Chen, M.; Jiang, S.; Niu, T.; Liu, D. Facile Synthesis of 3D Interconnected Porous G-C3N4/rGO Composite for Hydrogen Production and Dye Elimination. Catalysts 2023, 13, 1079. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Y.; Ye, J.; Cao, Z.; Zhu, K.; Yang, H.; Xu, Z. Oxygen-Doped Protonated C3N4 Nanosheet as Particle Electrode and Photocatalyst to Degrade Dye by Photoelectrocatalytic Oxidation Process. Sep. Purif. Technol. 2023, 312, 123405. [Google Scholar] [CrossRef]
- Huang, L.; Xu, H.; Li, Y.; Li, H.; Cheng, X.; Xia, J.; Xu, Y.; Cai, G. Visible-Light-Induced WO3/g-C3N4 Composites with Enhanced Photocatalytic Activity. Dalton Trans. 2013, 42, 8606. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Shi, L.; Wang, F.; Yao, L.; Zhang, Y.; Qi, W. Synthesis and Photo-Catalytic Activity of Porous g-C3N4: Promotion Effect of Nitrogen Vacancy in H2 Evolution and Pollutant Degradation Reactions. Int. J. Hydrogen Energy 2019, 44, 16315–16326. [Google Scholar] [CrossRef]
- Zhu, W.; Yue, Y.; Wang, H.; Zhang, B.; Hou, R.; Xiao, J.; Huang, X.; Ishag, A.; Sun, Y. Recent Advances on Energy and Environmental Application of Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts: A Review. J. Environ. Chem. Eng. 2023, 11, 110164. [Google Scholar] [CrossRef]
- Dawood, F.; Anda, M.; Shafiullah, G.M. Hydrogen Production for Energy: An Overview. Int. J. Hydrogen Energy 2020, 45, 3847–3869. [Google Scholar] [CrossRef]
- Mirhosseininia, J.; Sabbaghi, S.; Mirbagheri, N.S.; Zerafat, M.M. Treatment of As-Contaminated Drinking Water Using a Nano Zero-Valent Iron/Copper Slag Nanocomposite. J. Water Process Eng. 2022, 49, 103011. [Google Scholar] [CrossRef]
- Khanzada, N.K.; Farid, M.U.; Kharraz, J.A.; Choi, J.; Tang, C.Y.; Nghiem, L.D.; Jang, A.; An, A.K. Removal of Organic Micropollutants Using Advanced Membrane-Based Water and Wastewater Treatment: A Review. J. Membr. Sci. 2020, 598, 117672. [Google Scholar] [CrossRef]
- Sirés, I.; Brillas, E. Remediation of Water Pollution Caused by Pharmaceutical Residues Based on Electrochemical Separation and Degradation Technologies: A Review. Environ. Int. 2012, 40, 212–229. [Google Scholar] [CrossRef] [PubMed]
- Rasouli, K.; Rasouli, J.; Mohtaram, M.S.; Sabbaghi, S.; Kamyab, H.; Moradi, H.; Chelliapan, S. Biomass-Derived Activated Carbon Nanocomposites for Cleaner Production: A Review on Aspects of Photocatalytic Pollutant Degradation. J. Clean. Prod. 2023, 419, 138181. [Google Scholar] [CrossRef]
- Bai, Y.; Hippalgaonkar, K.; Sprick, R.S. Organic Materials as Photocatalysts for Water Splitting. J. Mater. Chem. A 2021, 9, 16222–16232. [Google Scholar] [CrossRef]
- Chen, L.; Maigbay, M.A.; Li, M.; Qiu, X. Synthesis and Modification Strategies of G-C3N4 Nanosheets for Photocatalytic Applications. Adv. Powder Mater. 2024, 3, 100150. [Google Scholar] [CrossRef]
- Jiao, X.; Zheng, K.; Hu, Z.; Sun, Y.; Xie, Y. Broad-Spectral-Response Photocatalysts for CO2 Reduction. ACS Cent. Sci. 2020, 6, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Bhowmik, S.; Phukan, S.J.; Sah, N.K.; Roy, M.; Garai, S.; Iyer, P.K. Review of Graphitic Carbon Nitride and Its Composite Catalysts for Selective Reduction of CO2. ACS Appl. Nano Mater. 2021, 4, 12845–12890. [Google Scholar] [CrossRef]
- Sun, B.; Lu, S.; Qian, Y.; Zhang, X.; Tian, J. Recent Progress in Research and Design Concepts for the Characterization, Testing, and Photocatalysts for Nitrogen Reduction Reaction. Carbon Energy 2023, 5, e305. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Q.; Li, H.; Shi, X.; Zhou, Y.; Ye, Q.; Yang, R.; Li, D.; Jiang, D. Synergistic Effects of the Ni3 B Cocatalyst and N Vacancy on g-C3N4 for Effectively Enhanced Photocatalytic N2 Fixation. Inorg. Chem. 2023, 62, 12138–12147. [Google Scholar] [CrossRef]
- Yang, X.; Wang, D. Photocatalysis: From Fundamental Principles to Materials and Applications. ACS Appl. Energy Mater. 2018, 1, 6657–6693. [Google Scholar] [CrossRef]
- Li, P.; Wang, J.; Wang, Y.; Dong, L.; Wang, W.; Geng, R.; Ding, Z.; Luo, D.; Pan, D.; Liang, J.; et al. Ultrafast Recovery of Aqueous Uranium: Photocatalytic U(VI) Reduction over CdS/g-C3N4. Chem. Eng. J. 2021, 425, 131552. [Google Scholar] [CrossRef]
- Xu, C.; Ravi Anusuyadevi, P.; Aymonier, C.; Luque, R.; Marre, S. Nanostructured Materials for Photocatalysis. Chem. Soc. Rev. 2019, 48, 3868–3902. [Google Scholar] [CrossRef] [PubMed]
- Akpan, U.G.; Hameed, B.H. Parameters Affecting the Photocatalytic Degradation of Dyes Using TiO2-Based Photocatalysts: A Review. J. Hazard. Mater. 2009, 170, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Akerdi, A.G.; Bahrami, S.H. Application of Heterogeneous Nano-Semiconductors for Photocatalytic Advanced Oxidation of Organic Compounds: A Review. J. Environ. Chem. Eng. 2019, 7, 103283. [Google Scholar] [CrossRef]
- Chen, D.; Cheng, Y.; Zhou, N.; Chen, P.; Wang, Y.; Li, K.; Huo, S.; Cheng, P.; Peng, P.; Zhang, R.; et al. Photocatalytic Degradation of Organic Pollutants Using TiO2-Based Photocatalysts: A Review. J. Clean. Prod. 2020, 268, 121725. [Google Scholar] [CrossRef]
- Gadore, V.; Mishra, S.R.; Ahmaruzzaman, M. Metal Sulphides and Their Heterojunctions for Photocatalytic Degradation of Organic Dyes-A Comprehensive Review. Environ. Sci. Pollut. Res. 2023, 30, 90410–90457. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhang, W.; Li, Q.; Liu, H.; Wang, X. Preparations and Applications of Zinc Oxide Based Photocatalytic Materials. Adv. Sens. Energy Mater. 2023, 2, 100069. [Google Scholar] [CrossRef]
- Cheng, L.; Xiang, Q.; Liao, Y.; Zhang, H. CdS-Based Photocatalysts. Energy Environ. Sci. 2018, 11, 1362–1391. [Google Scholar] [CrossRef]
- Okoye, P.C.; Azi, S.O.; Qahtan, T.F.; Owolabi, T.O.; Saleh, T.A. Synthesis, Properties, and Applications of Doped and Undoped CuO and Cu2O Nanomaterials. Mater. Today Chem. 2023, 30, 101513. [Google Scholar] [CrossRef]
- Zhang, J.-H.; Wei, M.-J.; Wei, Z.-W.; Pan, M.; Su, C.-Y. Ultrathin Graphitic Carbon Nitride Nanosheets for Photocatalytic Hydrogen Evolution. ACS Appl. Nano Mater. 2020, 3, 1010–1018. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, H.; Tu, W.; Liu, Y.; Tan, Y.Z.; Yuan, X.; Chew, J.W. Quasi-Polymeric Construction of Stable Perovskite-Type LaFeO3/g-C3N4 Heterostructured Photocatalyst for Improved Z-Scheme Photocatalytic Activity via Solid p-n Heterojunction Interfacial Effect. J. Hazard. Mater. 2018, 347, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Liu, X.; Chaker, M.; Ma, D. Advancing Graphitic Carbon Nitride-Based Photocatalysts toward Broadband Solar Energy Harvesting. ACS Mater. Lett. 2021, 3, 663–697. [Google Scholar] [CrossRef]
- Xu, J.; Gao, Q.; Wang, Z. Porous G-C3N4 Nanosheets for On–Off–On Fluorescence Detection and Elimination of Chromium(VI) and Sulfite. ACS Appl. Nano Mater. 2023, 6, 750–758. [Google Scholar] [CrossRef]
- Zhu, Q.; Xu, Z.; Qiu, B.; Xing, M.; Zhang, J. Emerging Cocatalysts on g-C3N4 for Photocatalytic Hydrogen Evolution. Small 2021, 17, 2101070. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cheng, M.; Lai, C.; Wei, Z.; Zhang, G.; Li, L.; Tang, C.; Du, L.; Wang, G.; Liu, H. The Collision between g-C3N4 and QDs in the Fields of Energy and Environment: Synergistic Effects for Efficient Photocatalysis. Small 2023, 19, 2205902. [Google Scholar] [CrossRef] [PubMed]
- Hayat, A.; Sohail, M.; El Jery, A.; Al-Zaydi, K.M.; Alshammari, K.F.; Khan, J.; Ali, H.; Ajmal, Z.; Taha, T.A.; Ud Din, I.; et al. Different Dimensionalities, Morphological Advancements and Engineering of g-C3N4-Based Nanomaterials for Energy Conversion and Storage. Chem. Rec. 2023, 23, e202200171. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, H.; Lin, L.; Xu, M.; Xu, W.; Liu, X. Construction of G-C3N4-Based Photoelectrodes towards Photoelectrochemical Water Splitting: A Review. J. Alloys Compd. 2023, 969, 172302. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, P. g-C3N4 Nanosheet Nanoarchitectonics: H2 Generation and CO2 Reduction. ChemNanoMat 2023, 9, e202300041. [Google Scholar] [CrossRef]
- Li, Y.; Ouyang, S.; Xu, H.; Hou, W.; Zhao, M.; Chen, H.; Ye, J. Targeted Exfoliation and Reassembly of Polymeric Carbon Nitride for Efficient Photocatalysis. Adv. Funct. Mater. 2019, 29, 1901024. [Google Scholar] [CrossRef]
- Walter, M.G.; Warren, E.L.; McKone, J.R.; Boettcher, S.W.; Mi, Q.; Santori, E.A.; Lewis, N.S. Solar Water Splitting Cells. Chem. Rev. 2010, 110, 6446–6473. [Google Scholar] [CrossRef]
- Liao, G.; Li, C.; Li, X.; Fang, B. Emerging Polymeric Carbon Nitride Z-Scheme Systems for Photocatalysis. Cell Rep. Phys. Sci. 2021, 2, 100355. [Google Scholar] [CrossRef]
- Guo, R.; Wang, J.; Bi, Z.; Chen, X.; Hu, X.; Pan, W. Recent Advances and Perspectives of g–C3N4–Based Materials for Photocatalytic Dyes Degradation. Chemosphere 2022, 295, 133834. [Google Scholar] [CrossRef] [PubMed]
- Tipplook, M.; Panomsuwan, G.; Sudare, T.; Teshima, K. Graphitic Carbon Nitride Nanoflakes Decorated on Multielement-Doped Carbon as Photocatalysts for Bacterial Disinfection under Visible and Near-Infrared Light. ACS Appl. Nano Mater. 2022, 5, 3422–3433. [Google Scholar] [CrossRef]
- Huo, X.; Yi, H.; Fu, Y.; An, Z.; Qin, L.; Liu, X.; Li, B.; Liu, S.; Li, L.; Zhang, M.; et al. Porous Graphitic Carbon Nitride Nanomaterials for Water Treatment. Environ. Sci. Nano 2021, 8, 1835–1862. [Google Scholar] [CrossRef]
- Hasija, V.; Raizada, P.; Sudhaik, A.; Sharma, K.; Kumar, A.; Singh, P.; Jonnalagadda, S.B.; Thakur, V.K. Recent Advances in Noble Metal Free Doped Graphitic Carbon Nitride Based Nanohybrids for Photocatalysis of Organic Contaminants in Water: A Review. Appl. Mater. Today 2019, 15, 494–524. [Google Scholar] [CrossRef]
- Bai, S.; Zhang, N.; Gao, C.; Xiong, Y. Defect Engineering in Photocatalytic Materials. Nano Energy 2018, 53, 296–336. [Google Scholar] [CrossRef]
- Wang, Y.; Zhong, S.; Niu, Z.; Dai, Y.; Li, J. Synthesis and Up-to-Date Applications of 2D Microporous g-C3N4 Nanomaterials for Sustainable Development. Chem. Commun. 2023, 59, 10883–10911. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.-Q.; Feng, Y.; Shi, Z.-Z.; Zhou, Y.-L.; Kang, W.-J.; Li, Z.; Mao, J.; Shen, G.-R.; Dong, C.-K.; Liu, H.; et al. Highly Conjugated Graphitic Carbon Nitride Nanofoam for Photocatalytic Hydrogen Evolution. Langmuir 2022, 38, 1471–1478. [Google Scholar] [CrossRef]
- Prasad, C.; Madkhali, N.; Govinda, V.; Choi, H.Y.; Bahadur, I.; Sangaraju, S. Recent Progress on the Development of G-C3N4 Based Composite Material and Their Photocatalytic Application of CO2 Reductions. J. Environ. Chem. Eng. 2023, 11, 109727. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Wang, X.; Zi, G.; Zhou, C.; Liu, B.; Liu, G.; Wang, L.; Huang, W. One-Step Supramolecular Preorganization Constructed Crinkly Graphitic Carbon Nitride Nanosheets with Enhanced Photocatalytic Activity. J. Mater. Sci. Technol. 2022, 104, 155–162. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, X.; Hao, S.; Zhang, X.; Wang, X.; Ma, W.; Zhao, G.; Xu, X. Recent Advances in the Improvement of G-C3N4 Based Photocatalytic Materials. Chin. Chem. Lett. 2021, 32, 13–20. [Google Scholar] [CrossRef]
- He, B.; Feng, M.; Chen, X.; Sun, J. Multidimensional (0D-3D) Functional Nanocarbon: Promising Material to Strengthen the Photocatalytic Activity of Graphitic Carbon Nitride. Green Energy Environ. 2021, 6, 823–845. [Google Scholar] [CrossRef]
- Luo, B.; Liu, G.; Wang, L. Recent Advances in 2D Materials for Photocatalysis. Nanoscale 2016, 8, 6904–6920. [Google Scholar] [CrossRef] [PubMed]
- Stefa, S.; Griniezaki, M.; Dimitropoulos, M.; Paterakis, G.; Galiotis, C.; Kiriakidis, G.; Klontzas, E.; Konsolakis, M.; Binas, V. Highly Porous Thin-Layer g-C3N4 Nanosheets with Enhanced Adsorption Capacity. ACS Appl. Nano Mater. 2023, 6, 1732–1743. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, J.; Jiang, L. Photocatalytic Hydrogen Evolution Based on Carbon Nitride and Organic Semiconductors. Nanotechnology 2022, 33, 322001. [Google Scholar] [CrossRef] [PubMed]
- Mehtab, A.; Alshehri, S.M.; Ahmad, T. Photocatalytic and Photoelectrocatalytic Water Splitting by Porous G-C3N4 Nanosheets for Hydrogen Generation. ACS Appl. Nano Mater. 2022, 5, 12656–12665. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Z.; Dong, C.-L.; Shi, J.; Cheng, C.; Guan, X.; Zong, S.; Luo, B.; Cheng, Z.; Wei, D.; et al. Synergistic Effect of Nitrogen Vacancy on Ultrathin Graphitic Carbon Nitride Porous Nanosheets for Highly Efficient Photocatalytic H2 Evolution. Chem. Eng. J. 2022, 431, 134101. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, Q.; Li, X.; Ji, H.; Shen, Z. Two-Dimensional g-C3N4 Nanosheets-Based Photo-Catalysts for Typical Sustainable Processes. Chin. Chem. Lett. 2023, 34, 108306. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, Y.; An, X.; Hou, L. A Critical Review of G-C3N4-Based Photocatalytic Membrane for Water Purification. Chem. Eng. J. 2021, 412, 128663. [Google Scholar] [CrossRef]
- Shi, L.; Chang, K.; Zhang, H.; Hai, X.; Yang, L.; Wang, T.; Ye, J. Drastic Enhancement of Photocatalytic Activities over Phosphoric Acid Protonated Porous g-C3N4 Nanosheets under Visible Light. Small 2016, 12, 4431–4439. [Google Scholar] [CrossRef]
- Papailias, I.; Todorova, N.; Giannakopoulou, T.; Ioannidis, N.; Boukos, N.; Athanasekou, C.P.; Dimotikali, D.; Trapalis, C. Chemical vs Thermal Exfoliation of G-C3N4 for NOx Removal under Visible Light Irradiation. Appl. Catal. B Environ. 2018, 239, 16–26. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, L.; Shi, R.; Zhu, Y. Chemical Exfoliation of Graphitic Carbon Nitride for Efficient Heterogeneous Photocatalysis. J. Mater. Chem. A 2013, 1, 14766. [Google Scholar] [CrossRef]
- Nguyen, T.K.A.; Pham, T.-T.; Nguyen-Phu, H.; Shin, E.W. The Effect of Graphitic Carbon Nitride Precursors on the Photocatalytic Dye Degradation of Water-Dispersible Graphitic Carbon Nitride Photocatalysts. Appl. Surf. Sci. 2021, 537, 148027. [Google Scholar] [CrossRef]
- Huang, J.; Cao, Y.; Wang, H.; Yu, H.; Peng, F.; Zou, H.; Liu, Z. Revealing Active-Site Structure of Porous Nitrogen-Defected Carbon Nitride for Highly Effective Photocatalytic Hydrogen Evolution. Chem. Eng. J. 2019, 373, 687–699. [Google Scholar] [CrossRef]
- Zhang, D.; Guo, Y.; Zhao, Z. Porous Defect-Modified Graphitic Carbon Nitride via a Facile One-Step Approach with Significantly Enhanced Photocatalytic Hydrogen Evolution under Visible Light Irradiation. Appl. Catal. B Environ. 2018, 226, 1–9. [Google Scholar] [CrossRef]
- Niu, P.; Liu, G.; Cheng, H.-M. Nitrogen Vacancy-Promoted Photocatalytic Activity of Graphitic Carbon Nitride. J. Phys. Chem. C 2012, 116, 11013–11018. [Google Scholar] [CrossRef]
- Huang, H.; Jiang, L.; Yang, J.; Zhou, S.; Yuan, X.; Liang, J.; Wang, H.; Wang, H.; Bu, Y.; Li, H. Synthesis and Modification of Ultrathin G-C3N4 for Photocatalytic Energy and Environmental Applications. Renew. Sustain. Energy Rev. 2023, 173, 113110. [Google Scholar] [CrossRef]
- Moradi, S.; Rodriguez-Seco, C.; Hayati, F.; Ma, D. Sonophotocatalysis with Photoactive Nanomaterials for Wastewater Treatment and Bacteria Disinfection. ACS Nanosci. Au 2023, 3, 103–129. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. A Critical Review on Graphitic Carbon Nitride (g-C3N4)-Based Materials: Preparation, Modification and Environmental Application. Coord. Chem. Rev. 2022, 453, 214338. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, X.; Wang, H.; Zhang, J.; Pan, B.; Xie, Y. Enhanced Photoresponsive Ultrathin Graphitic-Phase C3N4 Nanosheets for Bioimaging. J. Am. Chem. Soc. 2013, 135, 18–21. [Google Scholar] [CrossRef]
- Huang, H.; Xiao, K.; Tian, N.; Dong, F.; Zhang, T.; Du, X.; Zhang, Y. Template-Free Precursor-Surface-Etching Route to Porous, Thin g-C3N4 Nanosheets for Enhancing Photocatalytic Reduction and Oxidation Activity. J. Mater. Chem. A 2017, 5, 17452–17463. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Zhang, H.; Xiang, Q. Porous Graphitic Carbon Nitride for Solar Photocatalytic Applications. Nanoscale Horiz. 2020, 5, 765–786. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Zhang, Y.; Hussain, M.I.; Zhou, W.; Chen, Y.; Wang, L.-N. G-C3N4: Properties, Pore Modifications, and Photocatalytic Applications. Nanomaterials 2021, 12, 121. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-S.; Hu, J.-Y.; Jiang, H. Facile Modification of a Graphitic Carbon Nitride Catalyst to Improve Its Photoreactivity under Visible Light Irradiation. Chem. Eng. J. 2014, 256, 230–237. [Google Scholar] [CrossRef]
- Leong, K.H.; Lim, P.F.; Sim, L.C.; Punia, V.; Pichiah, S. Improved Solar Light Stimulated Charge Separation of G-C3N4 through Self-Altering Acidic Treatment. Appl. Surf. Sci. 2018, 430, 355–361. [Google Scholar] [CrossRef]
- Lin, L.-S.; Cong, Z.-X.; Li, J.; Ke, K.-M.; Guo, S.-S.; Yang, H.-H.; Chen, G.-N. Graphitic-Phase C3N4 Nanosheets as Efficient Photosensitizers and pH-Responsive Drug Nanocarriers for Cancer Imaging and Therapy. J. Mater. Chem. B 2014, 2, 1031. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Yan, J.-M.; Zhang, X.; Zhao, M. Synthesis of G-C3N4 with Heating Acetic Acid Treated Melamine and Its Photocatalytic Activity for Hydrogen Evolution. Appl. Surf. Sci. 2015, 354, 196–200. [Google Scholar] [CrossRef]
- Miao, H.; Zhang, G.; Hu, X.; Mu, J.; Han, T.; Fan, J.; Zhu, C.; Song, L.; Bai, J.; Hou, X. A Novel Strategy to Prepare 2D G-C3N4 Nanosheets and Their Photoelectrochemical Properties. J. Alloys Compd. 2017, 690, 669–676. [Google Scholar] [CrossRef]
- Bojdys, M.J.; Müller, J.; Antonietti, M.; Thomas, A. Ionothermal Synthesis of Crystalline, Condensed, Graphitic Carbon Nitride. Chem. A Eur. J 2008, 14, 8177–8182. [Google Scholar] [CrossRef]
- Hong, Z.; Shen, B.; Chen, Y.; Lin, B.; Gao, B. Enhancement of Photocatalytic H2 Evolution over Nitrogen-Deficient Graphitic Carbon Nitride. J. Mater. Chem. A 2013, 1, 11754. [Google Scholar] [CrossRef]
- Ming, L.; Yue, H.; Xu, L.; Chen, F. Hydrothermal Synthesis of Oxidized G-C3N4 and Its Regulation of Photocatalytic Activity. J. Mater. Chem. A 2014, 2, 19145–19149. [Google Scholar] [CrossRef]
- Bai, X.; Wang, L.; Zong, R.; Zhu, Y. Photocatalytic Activity Enhanced via G-C3N4 Nanoplates to Nanorods. J. Phys. Chem. C 2013, 117, 9952–9961. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Z.; Zhu, Y. Enhanced Visible-Light-Driven Photocatalytic Disinfection Performance and Organic Pollutant Degradation Activity of Porous g-C3N4 Nanosheets. ACS Appl. Mater. Interfaces 2017, 9, 27727–27735. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.Y.; Tang, Y.; Dai, S.; Qiao, S.Z. Proton-Functionalized Two-Dimensional Graphitic Carbon Nitride Nanosheet: An Excellent Metal-/Label-Free Biosensing Platform. Small 2014, 10, 2382–2389. [Google Scholar] [CrossRef] [PubMed]
- Luo, B.; Song, R.; Geng, J.; Jing, D.; Zhang, Y. Facile Preparation with High Yield of a 3D Porous Graphitic Carbon Nitride for Dramatically Enhanced Photocatalytic H2 Evolution under Visible Light. Appl. Catal. B Environ. 2018, 238, 294–301. [Google Scholar] [CrossRef]
- Ong, W.-J.; Tan, L.-L.; Ng, Y.H.; Yong, S.-T.; Chai, S.-P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer to Achieving Sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef] [PubMed]
- Hisatomi, T.; Takanabe, K.; Domen, K. Photocatalytic Water-Splitting Reaction from Catalytic and Kinetic Perspectives. Catal. Lett. 2015, 145, 95–108. [Google Scholar] [CrossRef]
- Li, J.; Wu, N. Semiconductor-Based Photocatalysts and Photoelectrochemical Cells for Solar Fuel Generation: A Review. Catal. Sci. Technol. 2015, 5, 1360–1384. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, T.; Guo, Y.; Zhang, Z.; Fang, X. Ultrathin G-C3N4 Nanosheets Coupled with Carbon Nanodots as 2D/0D Composites for Efficient Photocatalytic H2 Evolution. Appl. Catal. B Environ. 2016, 193, 248–258. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, M.; Yang, C.; Wang, X. Nanospherical Carbon Nitride Frameworks with Sharp Edges Accelerating Charge Collection and Separation at a Soft Photocatalytic Interface. Adv. Mater. 2014, 26, 4121–4126. [Google Scholar] [CrossRef]
- Lu, L.; Wang, B.; Wang, S.; Shi, Z.; Yan, S.; Zou, Z. La2O3-Modified LaTiO2N Photocatalyst with Spatially Separated Active Sites Achieving Enhanced CO2 Reduction. Adv. Funct. Mater. 2017, 27, 1702447. [Google Scholar] [CrossRef]
- Zhu, K.; Lv, Y.; Liu, J.; Wang, W.; Wang, C.; Wang, P.; Meng, A.; Li, Z.; Li, Q. Explosive Thermal Exfoliation of Intercalated Graphitic Carbon Nitride for Enhanced Photocatalytic Degradation Properties. Ceram. Int. 2019, 45, 3643–3647. [Google Scholar] [CrossRef]
- Cui, Y.; Zhang, J.; Zhang, G.; Huang, J.; Liu, P.; Antonietti, M.; Wang, X. Synthesis of Bulk and Nanoporous Carbon Nitride Polymers from Ammonium Thiocyanate for Photocatalytic Hydrogen Evolution. J. Mater. Chem. 2011, 21, 13032. [Google Scholar] [CrossRef]
- Chebanenko, M.I.; Zakharova, N.V.; Lobinsky, A.A.; Popkov, V.I. Ultrasonic-Assisted Exfoliation of Graphitic Carbon Nitride and Its Electrocatalytic Performance in Process of Ethanol Reforming. Semiconductors 2019, 53, 2072–2077. [Google Scholar] [CrossRef]
- Majdoub, M.; Anfar, Z.; Amedlous, A. Emerging Chemical Functionalization of G-C3N4: Covalent/Noncovalent Modifications and Applications. ACS Nano 2020, 14, 12390–12469. [Google Scholar] [CrossRef] [PubMed]
- Hasija, V.; Singh, P.; Thakur, S.; Stando, K.; Nguyen, V.-H.; Le, Q.V.; Alshehri, S.M.; Ahamad, T.; Wu, K.C.-W.; Raizada, P. Oxygen Doping Facilitated N-Vacancies in g-C3N4 Regulates Electronic Band Gap Structure for Trimethoprim and Cr (VI) Mitigation: Simulation Studies and Photocatalytic Degradation Pathways. Appl. Mater. Today 2022, 29, 101676. [Google Scholar] [CrossRef]
- Yu, H.; Shi, R.; Zhao, Y.; Bian, T.; Zhao, Y.; Zhou, C.; Waterhouse, G.I.N.; Wu, L.; Tung, C.; Zhang, T. Alkali-Assisted Synthesis of Nitrogen Deficient Graphitic Carbon Nitride with Tunable Band Structures for Efficient Visible-Light-Driven Hydrogen Evolution. Adv. Mater. 2017, 29, 1605148. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Tian, G.; Li, W.; Xie, Y.; Jiang, B.; Tian, C.; Zhao, D.; Fu, H. Molecule Self-Assembly Synthesis of Porous Few-Layer Carbon Nitride for Highly Efficient Photoredox Catalysis. J. Am. Chem. Soc. 2019, 141, 2508–2515. [Google Scholar] [CrossRef]
- Song, X.-L.; Chen, L.; Gao, L.-J.; Ren, J.-T.; Yuan, Z.-Y. Engineering G-C3N4 Based Materials for Advanced Photocatalysis: Recent Advances. Green Energy Environ. 2022, S2468025722001832. [Google Scholar] [CrossRef]
- Ling, G.Z.S.; Oh, V.B.-Y.; Haw, C.Y.; Tan, L.-L.; Ong, W.-J. G-C3N4 Photocatalysts: Utilizing Electron–Hole Pairs for Boosted Redox Capability in Water Splitting. Energy Mater. Adv. 2023, 4, 0038. [Google Scholar] [CrossRef]
- Rahman, M.Z.; Kwong, C.W.; Davey, K.; Qiao, S.Z. 2D Phosphorene as a Water Splitting Photocatalyst: Fundamentals to Applications. Energy Environ. Sci. 2016, 9, 709–728. [Google Scholar] [CrossRef]
- Morgan, D.J. Core-Level Reference Spectra for Bulk Graphitic Carbon Nitride (g-C3N4). Surf. Sci. Spectra 2021, 28, 014007. [Google Scholar] [CrossRef]
- Ismael, M. Environmental Remediation and Sustainable Energy Generation via Photocatalytic Technology Using Rare Earth Metals Modified G-C3N4: A Review. J. Alloys Compd. 2023, 931, 167469. [Google Scholar] [CrossRef]
- Zeng, Y.; Liu, X.; Liu, C.; Wang, L.; Xia, Y.; Zhang, S.; Luo, S.; Pei, Y. Scalable One-Step Production of Porous Oxygen-Doped g-C3N4 Nanorods with Effective Electron Separation for Excellent Visible-Light Photocatalytic Activity. Appl. Catal. B Environ. 2018, 224, 1–9. [Google Scholar] [CrossRef]
- Lv, C.; Qian, Y.; Yan, C.; Ding, Y.; Liu, Y.; Chen, G.; Yu, G. Defect Engineering Metal-Free Polymeric Carbon Nitride Electrocatalyst for Effective Nitrogen Fixation under Ambient Conditions. Angew Chem Int Ed 2018, 57, 10246–10250. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Huang, Y.; Chen, M.; Shi, X.; Zhang, Y.; Cao, J.; Ho, W.; Lee, S.C. Roles of N-Vacancies over Porous g-C3N4 Microtubes during Photocatalytic NOx Removal. ACS Appl. Mater. Interfaces 2019, 11, 10651–10662. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xin, B.; Shan, C.; Zhang, W.; Dionysiou, D.D.; Pan, B. Roles of Oxygen-Containing Functional Groups of O-Doped g-C3N4 in Catalytic Ozonation: Quantitative Relationship and First-Principles Investigation. Appl. Catal. B Environ. 2021, 292, 120155. [Google Scholar] [CrossRef]
- Li, J.; Shen, B.; Hong, Z.; Lin, B.; Gao, B.; Chen, Y. A Facile Approach to Synthesize Novel Oxygen-Doped g-C3N4 with Superior Visible-Light Photoreactivity. Chem. Commun. 2012, 48, 12017. [Google Scholar] [CrossRef]
- Huang, J.; Nie, G.; Ding, Y. Metal-Free Enhanced Photocatalytic Activation of Dioxygen by g-C3N4 Doped with Abundant Oxygen-Containing Functional Groups for Selective N-Deethylation of Rhodamine B. Catalysts 2019, 10, 6. [Google Scholar] [CrossRef]
- Ragupathi, V.; Panigrahi, P.; Ganapathi Subramaniam, N. Bandgap Engineering in Graphitic Carbon Nitride: Effect of Precursors. Optik 2020, 202, 163601. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Z.; Xu, S.; Guo, Y.; Kang, S.; Chang, X. H2+CO2 Synergistic Plasma Positioning Carboxyl Defects in G-C3N4 with Engineered Electronic Structure and Active Sites for Efficient Photocatalytic H2 Evolution. Int. J. Mol. Sci. 2022, 23, 7381. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Zhang, H.; Fan, J.; Xiang, Q. Design and Application of Active Sites in G-C3N4-Based Photocatalysts. J. Mater. Sci. Technol. 2020, 56, 69–88. [Google Scholar] [CrossRef]
- She, X.; Liu, L.; Ji, H.; Mo, Z.; Li, Y.; Huang, L.; Du, D.; Xu, H.; Li, H. Template-Free Synthesis of 2D Porous Ultrathin Nonmetal-Doped g-C3N4 Nanosheets with Highly Efficient Photocatalytic H2 Evolution from Water under Visible Light. Appl. Catal. B Environ. 2016, 187, 144–153. [Google Scholar] [CrossRef]
- Zhu, X.; Duan, C.; Wang, W.; Xin, G.; Song, J. Fabrication of Carboxylated G-C3N4 with Excellent Adsorption and Photocatalytic Properties. Mater. Lett. 2022, 317, 132045. [Google Scholar] [CrossRef]
- Sharma, R.; Almáši, M.; Nehra, S.P.; Rao, V.S.; Panchal, P.; Paul, D.R.; Jain, I.P.; Sharma, A. Photocatalytic Hydrogen Production Using Graphitic Carbon Nitride (GCN): A Precise Review. Renew. Sustain. Energy Rev. 2022, 168, 112776. [Google Scholar] [CrossRef]
- Rahman, M.Z.; Davey, K.; Mullins, C.B. Tuning the Intrinsic Properties of Carbon Nitride for High Quantum Yield Photocatalytic Hydrogen Production. Adv. Sci. 2018, 5, 1800820. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; Yu, C.; Li, J.; Li, Y.; Tao, C.; Liu, C.; Meng, H.; Su, Y.; Qiao, L.; Bai, Y. Engineering of G-C3N4-Based Photocatalysts to Enhance Hydrogen Evolution. Adv. Colloid Interface Sci. 2021, 295, 102488. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Liang, Y.; Ma, X.; Chen, F. Reduced Oxygenated g-C3N4 with Abundant Nitrogen Vacancies for Visible-Light Photocatalytic Applications. Chem. A Eur. J 2017, 23, 15466–15473. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Ma, C.; Yang, Q.; Wang, X.; An, S.; Zhang, X.; Tian, J. Construction of G-C3N4 with Three Coordinated Nitrogen (N3C) Vacancies for Excellent Photocatalytic Activities of N2 Fixation and H2O2 Production. Chem. Eng. J. 2023, 457, 141146. [Google Scholar] [CrossRef]
- Wang, L.; Li, F.; He, Q.; Liu, X.; Yu, C. Fabrication of Nitrogen-Deficient g-C3N4 Nanosheets via an Acetaldehyde-Assisted Hydrothermal Route and Their High Photocatalytic Performance for H2O2 Production and Cr(vi) Reduction. New J. Chem. 2023, 47, 12595–12607. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, Y.; Wang, T.; Xia, B.; Qian, J.; Ran, J.; Zhang, Z.; Gao, D. High-Temperature Ferromagnetism in Non-Metal Carbonitride: From Nitrogen Vacant g-C3N4 to N-Doped Graphene. J. Magn. Magn. Mater. 2021, 538, 168223. [Google Scholar] [CrossRef]
- Coleman, J.N.; Lotya, M.; O’Neill, A.; Bergin, S.D.; King, P.J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R.J.; et al. Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science 2011, 331, 568–571. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F.M.; Sun, Z.; De, S.; McGovern, I.T.; Holland, B.; Byrne, M.; Gun’Ko, Y.K.; et al. High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite. Nat. Nanotech 2008, 3, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Gong, Y.; Zhang, J.; Zhan, L.; Ma, L.; Fang, Z.; Vajtai, R.; Wang, X.; Ajayan, P.M. Exfoliated Graphitic Carbon Nitride Nanosheets as Efficient Catalysts for Hydrogen Evolution Under Visible Light. Adv. Mater. 2013, 25, 2452–2456. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zhu, Y.; Han, Y.; Ye, H.; Liu, R.; Lan, Y.; Xue, M.; Xie, X.; Yu, S.; Zhang, L.; et al. G-C3N4-Based Photocatalysts for Organic Pollutant Removal: A Critical Review. Carbon Res. 2023, 2, 14. [Google Scholar] [CrossRef]
- García-Mulero, A.; Rendón-Patiño, A.; Asiri, A.M.; Primo, A.; Garcia, H. Band Engineering of Semiconducting Microporous Graphitic Carbons by Phosphorous Doping: Enhancing of Photocatalytic Overall Water Splitting. ACS Appl. Mater. Interfaces 2021, 13, 48753–48763. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Wang, J.; Mu, X.; Li, R.; Li, X.; Fan, X.; Song, P.; Ma, F.; Sun, M. Porous Size Dependent G-C3N4 for Efficient Photocatalysts: Regulation Synthesizes and Physical Mechanism. Mater. Today Energy 2019, 13, 11–21. [Google Scholar] [CrossRef]
- Cui, L.; Liu, Y.; Wang, Y.; Fang, X.; Yin, C.; Kang, S.; Dong, M. Constructing Ultrathin G-C3N4 Nanosheets with Hierarchical Pores by NaClO Induced Wet Etching for Efficient Photocatalytic Cr(VI) Detoxification under Visible Light Irradiation. Diam. Relat. Mater. 2018, 88, 51–59. [Google Scholar] [CrossRef]
- Wen, J.; Xie, J.; Chen, X.; Li, X. A Review on G-C3N4-Based Photocatalysts. Appl. Surf. Sci. 2017, 391, 72–123. [Google Scholar] [CrossRef]
- Zhang, S.; Gu, P.; Ma, R.; Luo, C.; Wen, T.; Zhao, G.; Cheng, W.; Wang, X. Recent Developments in Fabrication and Structure Regulation of Visible-Light-Driven g-C3N4-Based Photocatalysts towards Water Purification: A Critical Review. Catal. Today 2019, 335, 65–77. [Google Scholar] [CrossRef]
- Long, B.; Yan, G.; He, H.; Meng, S. Porous and Few-Layer Carbon Nitride Nanosheets via Surface Steam Etching for Enhanced Photodegradation Activity. ACS Appl. Nano Mater. 2022, 5, 7798–7810. [Google Scholar] [CrossRef]
- Xu, R.; Li, J.; Sui, G.; Zhuang, Y.; Guo, D.; Luo, Z.; Liang, S.; Yao, H.; Wang, C.; Chen, S. Constructing Supramolecular Self-Assembled Porous g-C3N4 Nanosheets Containing Thiophene-Groups for Excellent Photocatalytic Performance under Visible Light. Appl. Surf. Sci. 2022, 578, 152064. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, F.; Zhou, S.; Bao, N.; Xu, Z.; Chaker, M.; Ma, D. Broadband Photocatalysts Enabled by 0D/2D Heterojunctions of near-Infrared Quantum Dots/Graphitic Carbon Nitride Nanosheets. Appl. Catal. B Environ. 2020, 270, 118879. [Google Scholar] [CrossRef]
- Zhang, X.; Jia, X.; Duan, P.; Xia, R.; Zhang, N.; Cheng, B.; Wang, Z.; Zhang, Y. V2O5/P-g-C3N4 Z-Scheme Enhanced Heterogeneous Photocatalytic Removal of Methyl Orange from Water under Visible Light Irradiation. Colloids Surf. A Physicochem. Eng. Asp. 2021, 608, 125580. [Google Scholar] [CrossRef]
- Kampalapura Swamy, C.; Hezam, A.; Mavinakere Ramesh, A.; Habbanakuppe Ramakrishnegowda, D.; Purushothama, D.K.; Krishnegowda, J.; Kanchugarakoppal S., R.; Shivanna, S. Microwave Hydrothermal Synthesis of Copper Induced ZnO/gC3N4 Heterostructure with Efficient Photocatalytic Degradation through S-Scheme Mechanism. J. Photochem. Photobiol. A Chem. 2021, 418, 113394. [Google Scholar] [CrossRef]
- Liu, R.; Yang, W.; He, G.; Zheng, W.; Li, M.; Tao, W.; Tian, M. Ag-Modified g-C3N4 Prepared by a One-Step Calcination Method for Enhanced Catalytic Efficiency and Stability. ACS Omega 2020, 5, 19615–19624. [Google Scholar] [CrossRef] [PubMed]
- Dou, Q.; Hou, J.; Hussain, A.; Zhang, G.; Zhang, Y.; Luo, M.; Wang, X.; Cao, C. One-Pot Synthesis of Sodium-Doped Willow-Shaped Graphitic Carbon Nitride for Improved Photocatalytic Activity under Visible-Light Irradiation. J. Colloid Interface Sci. 2022, 624, 79–87. [Google Scholar] [CrossRef]
- Liu, F.; Nguyen, T.-P.; Wang, Q.; Massuyeau, F.; Dan, Y.; Jiang, L. Construction of Z-Scheme g-C3N4/Ag/P3HT Heterojunction for Enhanced Visible-Light Photocatalytic Degradation of Tetracycline (TC) and Methyl Orange (MO). Appl. Surf. Sci. 2019, 496, 143653. [Google Scholar] [CrossRef]
- Huang, Z.; Jia, S.; Wei, J.; Shao, Z. A Visible Light Active, Carbon–Nitrogen–Sulfur Co-Doped TiO2/g-C3N4 Z-Scheme Heterojunction as an Effective Photocatalyst to Remove Dye Pollutants. RSC Adv. 2021, 11, 16747–16754. [Google Scholar] [CrossRef]
- Santha kumar, K.; Vellaichamy, B.; Paulmony, T. Visible Light Active Metal-Free Photocatalysis: N-Doped Graphene Covalently Grafted with g-C3N4 for Highly Robust Degradation of Methyl Orange. Solid State Sci. 2019, 94, 99–105. [Google Scholar] [CrossRef]
- G-C3N4 Quantum Dot Decorated MoS2/Fe3O4 as a Novel Recoverable Catalyst for Photodegradation of Organic Pollutant under Visible Light|Journal of Materials Science: Materials in Electronics. Available online: https://link.springer.com/article/10.1007/s10854-021-06790-w (accessed on 29 November 2023).
Sample | Hydrothermal Method | Thermal Exfoliation | Ultrasonication in Acid | Ultrasonication in Water |
---|---|---|---|---|
500-CN | 180 °C | 500 °C | ||
550-CN | 180 °C | 550 °C | ||
600-CN | 180 °C | 600 °C | ||
500-UCN | 180 °C | 500 °C | ☑ | |
550-UCN | 180 °C | 550 °C | ☑ | |
600-UCN | 180 °C | 600 °C | ☑ | |
500-AUCN | 180 °C | 500 °C | ☑ | |
550-AUCN | 180 °C | 550 °C | ☑ | |
600-AUCN | 180 °C | 600 °C | ☑ |
Sample | k (10−3 mg−1 min−1) |
---|---|
500-AUCN | 11.2 ± 0.35 |
500-UCN | 2.3 ± 0.48 |
500-CN | 1.4 ± 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalantari Bolaghi, Z.; Rodriguez-Seco, C.; Yurtsever, A.; Ma, D. Exploring the Remarkably High Photocatalytic Efficiency of Ultra-Thin Porous Graphitic Carbon Nitride Nanosheets. Nanomaterials 2024, 14, 103. https://doi.org/10.3390/nano14010103
Kalantari Bolaghi Z, Rodriguez-Seco C, Yurtsever A, Ma D. Exploring the Remarkably High Photocatalytic Efficiency of Ultra-Thin Porous Graphitic Carbon Nitride Nanosheets. Nanomaterials. 2024; 14(1):103. https://doi.org/10.3390/nano14010103
Chicago/Turabian StyleKalantari Bolaghi, Zahra, Cristina Rodriguez-Seco, Aycan Yurtsever, and Dongling Ma. 2024. "Exploring the Remarkably High Photocatalytic Efficiency of Ultra-Thin Porous Graphitic Carbon Nitride Nanosheets" Nanomaterials 14, no. 1: 103. https://doi.org/10.3390/nano14010103
APA StyleKalantari Bolaghi, Z., Rodriguez-Seco, C., Yurtsever, A., & Ma, D. (2024). Exploring the Remarkably High Photocatalytic Efficiency of Ultra-Thin Porous Graphitic Carbon Nitride Nanosheets. Nanomaterials, 14(1), 103. https://doi.org/10.3390/nano14010103