Efficiency of InN/InGaN/GaN Intermediate-Band Solar Cell under the Effects of Hydrostatic Pressure, In-Compositions, Built-in-Electric Field, Confinement, and Thickness
Abstract
:1. Introduction
2. Theory and Models
2.1. Energy Levels and Electronic States
2.2. Built-In Electric Field
2.3. Parameters Influenced by Pressure and Strain
2.4. Photonic and Electrical Characteristics of the Solar Cell
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shockley, W. The Shockley-Queisser limit. J. Appl. Phys. 1961, 32, 510–519. [Google Scholar] [CrossRef]
- Shockley, W.; Queisser, H.J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 2018, 45, 510–519. [Google Scholar]
- Akinoglu, B.G.; Tuncel, B.; Badescu, V. Beyond 3rd generation solar cells and the full spectrum project. Recent advances and new emerging solar cells. Sustain. Energy Technol. Assess. 2021, 46, 101287. [Google Scholar] [CrossRef]
- Best Research-Cell Efficiency Chart. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 15 August 2023).
- Soga, T. Fundamentals of solar cell. In Nanostructured Materials for Solar Energy Conversion; Elsevier: Amsterdam, The Netherlands, 2006; pp. 3–43. [Google Scholar]
- Martí, A.; Stanley, C.R.; Luque, A. Intermediate band solar cells (IBSC) using nanotechnology. In Nanostructured Materials for Solar Energy Conversion; Elsevier: Amsterdam, The Netherlands, 2006; pp. 539–566. [Google Scholar]
- Jacak, J.E.; Jacak, W.A. Routes for Metallization of Perovskite Solar Cells. Materials 2022, 15, 2254. [Google Scholar] [CrossRef] [PubMed]
- Laska, M.; Krzemińska, Z.; Kluczyk-Korch, K.; Schaadt, D.; Popko, E.; Jacak, W.; Jacak, J. Metallization of solar cells, exciton channel of plasmon photovoltaic effect in perovskite cells. Nano Energy 2020, 75, 104751. [Google Scholar] [CrossRef]
- Basyooni, M.A.; Tihtih, M.; Boukhoubza, I.; Ibrahim, J.E.F.M.; En-Nadir, R.; Abdelbar, A.M.; Rahmani, K.; Zaki, S.E.; Ateş, Ş.; Eker, Y.R. Iridium/Silicon Ultrathin Film for Ultraviolet Photodetection: Harnessing Hot Plasmonic Effects. Phys. Status Solidi RRL Rapid Res. Lett. 2023, 2300257. [Google Scholar] [CrossRef]
- Martí, A.; Cuadra, L.; Luque, A. Quantum dot intermediate band solar cell. In Proceedings of the Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference—2000 (Cat. No. 00CH37036), Anchorage, AK, USA, 15–22 September 2000; IEEE: New York, NY, USA, 2000; pp. 940–943. [Google Scholar]
- Prieto, J.E.; Markov, I. Stranski–Krastanov mechanism of growth and the effect of misfit sign on quantum dots nucleation. Surf. Sci. 2017, 664, 172–184. [Google Scholar] [CrossRef]
- Schuck, C.F.; Roy, S.K.; Garrett, T.; Yuan, Q.; Wang, Y.; Cabrera, C.I.; Grossklaus, K.A.; Vandervelde, T.E.; Liang, B.; Simmonds, P.J. Anomalous Stranski-Krastanov growth of (111)-oriented quantum dots with tunable wetting layer thickness. Sci. Rep. 2019, 9, 18179. [Google Scholar] [CrossRef]
- Agarwal, K.; Rai, H.; Mondal, S. Quantum dots: An overview of synthesis, properties, and applications. Mater. Res. Express 2023, 10, 062001. [Google Scholar] [CrossRef]
- Luque, A.; Martí, A.; López, N.; Antolín, E.; Cánovas, E.; Stanley, C.; Farmer, C.; Caballero, L.J.; Cuadra, L.; Balenzategui, J.L. Experimental analysis of the quasi-Fermi level split in quantum dot intermediate-band solar cells. Appl. Phys. Lett. 2005, 87, 083505. [Google Scholar] [CrossRef]
- Nath, B.; Alam, M.K.; Mohamed, H.; Yusoff, Y.; Matin, M.A.; Amin, N. Performance Analysis of InAs0.98N0.02/AlPxSb(1−x) Quantum Dot Intermediate Band Solar Cell. In Proceedings of the 2021 IEEE 4th International Conference on Renewable Energy and Power Engineering (REPE), Beijing, China, 9–11 October 2021; IEEE: New York, NY, USA, 2021; pp. 81–85. [Google Scholar]
- Wang, S.; Yang, X.; Chai, H.; Lv, Z.; Wang, S.; Wang, H.; Wang, H.; Meng, L.; Yang, T. Detailed Balance-Limiting Efficiency of Solar Cells with Dual Intermediate Bands Based on InAs/InGaAs Quantum Dots. Photonics 2022, 9, 290. [Google Scholar] [CrossRef]
- El Ghazi, H. Numerical investigation of one-intermediate band InN/GaN QW solar cell under electric field, impurity and size effects. Phys. B Condens. Matter 2021, 602, 412427. [Google Scholar] [CrossRef]
- Acharya, A.R. Group III–nitride semiconductors: Preeminent materials for modern electronic and optoelectronic applications. Himal. Phys. 2014, 5, 22–26. [Google Scholar] [CrossRef]
- Ziembicki, J.; Scharoch, P.; Polak, M.P.; Wiśniewski, M.; Kudrawiec, R. Band parameters of group III–V semiconductors in wurtzite structure. J. Appl. Phys. 2022, 132, 225701. [Google Scholar] [CrossRef]
- Leroux, M.; Grandjean, N.; Massies, J.; Gil, B.; Lefebvre, P.; Bigenwald, P. Barrier-width dependence of group-III nitrides quantum-well transition energies. Phys. Rev. B 1999, 60, 1496. [Google Scholar] [CrossRef]
- Belmabrouk, H.; Chouchen, B.; Feddi, E.M.; Dujardin, F.; Tlili, I.; Ben Ayed, M.; Gazzah, M.H. Modeling the simultaneous effects of thermal and polarization in InGaN/GaN based high electron mobility transistors. Optik 2020, 207, 163883. [Google Scholar] [CrossRef]
- En-nadir, R.; Kabatas, M.A.B.-M.; Tihtih, M.; Ghazi, H.E. Linear and nonlinear optical absorption coefficients in InGaN/GaN quantum wells: Interplay between intense laser field and higher-order anharmonic potentials. Heliyon 2023, 9, e22867. [Google Scholar] [CrossRef]
- En-nadir, R.; El Ghazi, H.; Jorio, A.; Zorkani, I.; Kiliç, H. Intersubband optical absorption in (In,Ga)N/GaN double quantum wells considering applied electric field effects. J. Comput. Electron. 2022, 21, 111–118. [Google Scholar] [CrossRef]
- En-Nadir, R.; El-Ghazi, H.; Leontie, L.; Tihtih, M.; Zaki, S.E.; Belaid, W.; Carlescu, A.; Zorkani, I. Tailoring optoelectronic properties of InGaN-based quantum wells through electric field, indium content, and confinement shape: A theoretical investigation. Phys. B Condens. Matter 2023, 663, 414976. [Google Scholar] [CrossRef]
- En-Nadir, R.; El Ghazi, H.; Tihtih, M.; Zaki, S.E.; Belaid, W.; Maouhoubi, I.; Zorkani, I. Exploring the electronic properties of shallow donor impurities in modified ∩-shaped potential: Effects of applied electric field, parabolicity, compositions, and thickness. Eur. Phys. J. B 2023, 96, 78. [Google Scholar] [CrossRef]
- En-Nadir, R.; El-Ghazi, H.; Abboudi, H.; Maouhoubi, I.; Jorio, A.; Zorkani, I.; El-Ganaoui, M. The electric and magnetic field effects on the optical absorption in double QWs with squared, U-shaped and V-shaped confinement potentials. Philos. Mag. 2022, 103, 321–334. [Google Scholar] [CrossRef]
- Zhang, L.; Chi, Y.-M.; Shi, J.-J. Second-order nonlinear optical susceptibilities induced by built-in electric field in wurtzite nitride double quantum wells. Phys. Lett. A 2007, 366, 256–261. [Google Scholar] [CrossRef]
- Chang, J.-Y.; Kuo, Y.-K. Numerical study on the influence of piezoelectric polarization on the performance of p-on-n (0001)-face GaN/InGaN pin solar cells. IEEE Electron Device Lett. 2011, 32, 937–939. [Google Scholar] [CrossRef]
- Oyewole, D.O.; Oyewole, O.K.; Kushnir, K.; Shi, T.; Oyelade, O.V.; Adeniji, S.A.; Agyei-Tuffour, B.; Evans-Lutterodt, K.; Titova, L.V.; Soboyejo, W.O. Pressure and thermal annealing effects on the photoconversion efficiency of polymer solar cells. AIP Adv. 2021, 11, 045304. [Google Scholar] [CrossRef]
- El Aouami, A.; Bikerouin, M.; El-Yadri, M.; Feddi, E.; Dujardin, F.; Courel, M.; Chouchen, B.; Gazzah, M.; Belmabrouk, H. Internal polarization electric field effects on the efficiency of InN/InxGa1-xN multiple quantum dot solar cells. Sol. Energy 2020, 201, 339–347. [Google Scholar] [CrossRef]
- Hoenk, M.E.; Cunningham, T.J.; Jones, T.J.; Newton, K.W.; Nikzad, S. Conference 6471B: Semiconductor Photodetectors IV. In Proceedings of the OPTO 2007 Integrated Optoelectronic Devices, San Jose, CA, USA, 20–25 January 2007; Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f9f2aca1765794c8417f76778d254ec6271794ee#page=40 (accessed on 21 December 2023).
- Ali, M. Experimental Investigations on Growth of GaN-Based Materials for Light Emitting Applications. Ph.D. Thesis, Aalto University, Espoo, Finland, 2012. Available online: https://aaltodoc.aalto.fi/handle/123456789/7288 (accessed on 21 December 2023).
- Belaid, W.; El Ghazi, H.; Zorkani, I.; Jorio, A. Impact of QW coupling on the binding energy in InGaN/GaN under the effects of the size, the impurity and the internal composition. MATEC Web Conf. 2020, 330, 01012. [Google Scholar] [CrossRef]
- En-nadir, R.; El Ghazi, H.; Jorio, A.; Zorkani, I.; Abboudi, H.; Jabouti, F.A. Numerical study of temperature and electric field effects on the total optical absorption coefficient related-conduction-subband optical transitions in InGaN/GaN single parabolic QW. Fluid. Dyn. Mater. Process 2022, 18, 1253–1261. [Google Scholar] [CrossRef]
- Zscherp, M.F.; Jentsch, S.A.; Müller, M.J.; Lider, V.; Becker, C.; Chen, L.; Littmann, M.; Meier, F.; Beyer, A.; Hofmann, D.M.; et al. Overcoming the Miscibility Gap of GaN/InN in MBE Growth of Cubic InxGa1−xN. ACS Appl. Mater. Interfaces 2023, 15, 39513–39522. [Google Scholar] [CrossRef]
- El Ghazi, H.; Jorio, A. Electron-hole transition in spherical QD-QW nanoparticles based on GaN∣(In, Ga) N∣ GaN under hydrostatic pressure. Phys. B Condens. Matter 2013, 429, 42–45. [Google Scholar] [CrossRef]
- El Ghazi, H.; Peter, A.J. Threshold pump intensity effect on the refractive index changes in InGaN SQD: Internal constitution and size effects. Phys. B Condens. Matter 2015, 462, 30–33. [Google Scholar] [CrossRef]
- En-Nadir, R.; Kabatas, M.A.B.-M.; Tihtih, M.; Belaid, W.; Ez-Zejjari, I.; Majda, E.G.; El Ghazi, H.; Sali, A.; Zorkani, I. Enhancing Emission via Radiative Lifetime Manipulation in Ultrathin InGaN/GaN Quantum Wells: The Effects of Simultaneous Electric and Magnetic Fields, Thickness, and Impurity. Nanomaterials 2023, 13, 2817. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.F.; Ager, J.; Walukiewicz, W.; Wu, J. Finite element simulations of compositionally graded InGaN solar cells. Sol. Energy Mater. Sol. Cells 2010, 94, 478–483. [Google Scholar] [CrossRef]
- Ambacher, O. Growth and applications of group III-nitrides. J. Phys. Appl. Phys. 1998, 31, 2653. [Google Scholar] [CrossRef]
- Takeuchi, T.; Sota, S.; Katsuragawa, M.; Komori, M.; Takeuchi, H.; Amano, H.A.H.; Akasaki, I.A.I. Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells. Jpn. J. Appl. Phys. 1997, 36, L382. [Google Scholar] [CrossRef]
- Shi, J.; Gan, Z. Effects of piezoelectricity and spontaneous polarization on localized excitons in self-formed InGaN quantum dots. J. Appl. Phys. 2003, 94, 407–415. [Google Scholar] [CrossRef]
- Ridley, B.K.; Schaff, W.J.; Eastman, L.F. Theoretical model for polarization superlattices: Energy levels and intersubband transitions. J. Appl. Phys. 2003, 94, 3972–3978. [Google Scholar] [CrossRef]
- Bernardini, F.; Fiorentini, V. Spontaneous versus piezoelectric polarization in III–V nitrides: Conceptual aspects and practical consequences. Phys. Status Solidi B 1999, 216, 391–398. [Google Scholar] [CrossRef]
- Ambacher, O.; Majewski, J.; Miskys, C.; Link, A.; Hermann, M.; Eickhoff, M.; Stutzmann, M.; Bernardini, F.; Fiorentini, V.; Tilak, V.; et al. Pyroelectric properties of Al (In) GaN/GaN hetero-and quantum well structures. J. Phys. Condens. Matter 2002, 14, 3399. [Google Scholar] [CrossRef]
- Fiorentini, V.; Bernardini, F.; Ambacher, O. Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures. Appl. Phys. Lett. 2002, 80, 1204–1206. [Google Scholar] [CrossRef]
- Bernardini, F.; Fiorentini, V.; Vanderbilt, D. Spontaneous polarization and piezoelectric constants of III–V nitrides. Phys. Rev. B 1997, 56, R10024–R10027. [Google Scholar] [CrossRef]
- Masui, H.; Asamizu, H.; Melo, T.; Yamada, H.; Iso, K.; Cruz, S.C.; Nakamura, S.; DenBaars, S.P. Effects of piezoelectric fields on optoelectronic properties of InGaN/GaN quantum-well light-emitting diodes prepared on nonpolar (1 0 0) and semipolar (1 1 2) orientations. J. Phys. Appl. Phys. 2009, 42, 135106. [Google Scholar] [CrossRef]
- Bykhovski, A.D.; Gelmont, B.L.; Shur, M.S. Elastic strain relaxation and piezoeffect in GaN-AlN, GaN-AlGaN and GaN-InGaN superlattices. J. Appl. Phys. 2023, 81, 6332–6338. [Google Scholar] [CrossRef]
- El Ghazi, H.; En-nadir, R.; Abboudi, H.; Jabouti, F.; Jorio, A.; Zorkani, I. Two-dimensional electron gas modeling in strained InN/GaN hetero-interface under pressure and impurity effects. Phys. B Condens. Matter 2020, 582, 411951. [Google Scholar] [CrossRef]
- El Ghazi, H.; Peter, A.J. Photo-ionization cross-section of donor-related in (In, Ga) N/GaN core/shell under hydrostatic pressure and electric field effects. Superlattices Microstruct. 2017, 104, 222–231. [Google Scholar] [CrossRef]
- Maouhoubi, I.; En-nadir, R.; El Bekkari, K.; Zorkani, I.; Hassani, A.O.T.; Jorio, A. Effects of applied magnetic field and pressure on the diamagnetic susceptibility and binding energy of donor impurity in GaAs quantum dot considering the non-parabolicity model’s influence. Philos. Mag. 2022, 103, 286–303. [Google Scholar] [CrossRef]
- Duque, C.M.; Morales, A.L.; Mora-Ramos, M.E.; Duque, C.A. Exciton-related optical properties in zinc-blende GaN/InGaN quantum wells under hydrostatic pressure. Phys. Status Solidi B 2015, 252, 670–677. [Google Scholar] [CrossRef]
- En-Nadir, R.; El Ghazi, H.; Jorio, A.; Zorkani, I. Ground-state Shallow-donor Binding Energy in (In, Ga) N/GaN Double QWs Under Temperature, Size, and the Impurity Position Effects. J. Model. Simul. Mater. 2021, 4, 1–6. [Google Scholar] [CrossRef]
- Belaid, W.; El Ghazi, H.; Zorkani, I.; Jorio, A. Pressure-related binding energy in (In, Ga) N/GaN double quantum wells under internal composition effects. Solid. State Commun. 2021, 327, 114193. [Google Scholar] [CrossRef]
- Larson, M.G.; Bengzon, F. The Finite Element Method: Theory, Implementation, and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 10. [Google Scholar]
- En-nadir, R.; El-ghazi, H. Theoretical study of ISB conduction optical absorption and impurity binding energy associated with lowest excited states in QW with a new modulated potential. J. Theor. Appl. Phys. 2023, 17, 2. [Google Scholar] [CrossRef]
- En-nadir, R.; Ghazi, H.E.; Belaid, W.; Jorio, A.; Zorkani, I.; Kiliç, H.Ş. Ground and first five low-lying excited states related optical absorption in In.1Ga.9N/GaN double quantum wells: Temperature and coupling impacts. Solid State Commun. 2021, 338, 114464. [Google Scholar] [CrossRef]
- En-Nadir, R.; El-Ghazi, H.; Tihtih, M.; Belaid, W.; Zaki, S.E.; Maouhoubi, I.; Zorkani, I. Analyzing the combined influences of external electric field, impurity-location, in-content, and QW’s number on donor-impurity binding energy in multiple quantum wells with finite squared potential. Opt. Quantum Electron. 2023, 55, 597. [Google Scholar] [CrossRef]
- Luque, A.; Martí, A.; Stanley, C. Understanding intermediate-band solar cells. Nat. Photonics 2012, 6, 146–152. [Google Scholar] [CrossRef]
- Luque, A.; Martí, A. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys. Rev. Lett. 1997, 78, 5014. [Google Scholar] [CrossRef]
- Abboudi, H.; El Ghazi, H.; Benhaddou, F.; En-nadir, R.; Jorio, A.; Zorkani, I. Temperature-related photovoltaic characteristics of (In,Ga)N single-intermediate band quantum well solar cells for different shapes. Phys. B Condens. Matter 2021, 626, 413495. [Google Scholar] [CrossRef]
- Lévy, F. Physique et Technologie des Semiconducteurs; PPUR Presses Polytechniques: Lausanne, Switzerland, 1995; Volume 18. [Google Scholar]
- Green, M.A. Solar cell fill factors: General graph and empirical expressions. Solid-State Electron. 1981, 24, 788–789. [Google Scholar] [CrossRef]
- Deng, Q.; Wang, X.; Yang, C.; Xiao, H.; Wang, C.; Yin, H.; Hou, Q.; Li, J.; Wang, Z.; Hou, X. Theoretical study on InxGa1-xN/GaN quantum dots solar cell. Phys. B Condens. Matter 2011, 406, 73–76. [Google Scholar] [CrossRef]
- En-nadir, R.; El Ghazi, H.; Jorio, A.; Zorkani, I. Inter and intra band impurity-related absorption in (In, Ga) N/GaN QW under composition, size and impurity effects. In Proceedings of the International Conference on Materials & Energy (ICOME’19), Hammamet, Tunisia, 23–26 April 2019; EDP Sciences: Les Ulis, France, 2020. [Google Scholar]
- Zhao, H.; Arif, R.A.; Ee, Y.-K.; Tansu, N. Self-consistent analysis of strain-compensated InGaN–AlGaN quantum wells for lasers and light-emitting diodes. IEEE J. Quantum Electron. 2008, 45, 66–78. [Google Scholar] [CrossRef]
- Park, S.-H.; Ahn, D.; Park, J.; Lee, Y.-T. Optical properties of staggered InGaN/InGaN/GaN quantum-well structures with Ga-and N-faces. Jpn. J. Appl. Phys. 2011, 50, 072101. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abboudi, H.; EL Ghazi, H.; En-nadir, R.; Basyooni-M. Kabatas, M.A.; Jorio, A.; Zorkani, I. Efficiency of InN/InGaN/GaN Intermediate-Band Solar Cell under the Effects of Hydrostatic Pressure, In-Compositions, Built-in-Electric Field, Confinement, and Thickness. Nanomaterials 2024, 14, 104. https://doi.org/10.3390/nano14010104
Abboudi H, EL Ghazi H, En-nadir R, Basyooni-M. Kabatas MA, Jorio A, Zorkani I. Efficiency of InN/InGaN/GaN Intermediate-Band Solar Cell under the Effects of Hydrostatic Pressure, In-Compositions, Built-in-Electric Field, Confinement, and Thickness. Nanomaterials. 2024; 14(1):104. https://doi.org/10.3390/nano14010104
Chicago/Turabian StyleAbboudi, Hassan, Haddou EL Ghazi, Redouane En-nadir, Mohamed A. Basyooni-M. Kabatas, Anouar Jorio, and Izeddine Zorkani. 2024. "Efficiency of InN/InGaN/GaN Intermediate-Band Solar Cell under the Effects of Hydrostatic Pressure, In-Compositions, Built-in-Electric Field, Confinement, and Thickness" Nanomaterials 14, no. 1: 104. https://doi.org/10.3390/nano14010104
APA StyleAbboudi, H., EL Ghazi, H., En-nadir, R., Basyooni-M. Kabatas, M. A., Jorio, A., & Zorkani, I. (2024). Efficiency of InN/InGaN/GaN Intermediate-Band Solar Cell under the Effects of Hydrostatic Pressure, In-Compositions, Built-in-Electric Field, Confinement, and Thickness. Nanomaterials, 14(1), 104. https://doi.org/10.3390/nano14010104