Interface Trap Effect on the n-Channel GaN Schottky Barrier-Metal–Oxide Semiconductor Field-Effect Transistor for Ultraviolet Optoelectronic Integration
Abstract
:1. Introduction
2. Device Simulation Methodology
2.1. Device Structure and Simulation Models
2.2. Defect Models
2.3. Effect of Interface Trap States
3. Results and Discussion
3.1. Static Characteristics of the GaN SB-MOSFET
3.2. Output Characteristics Related to the Acceptor-like Trap State
3.3. Photo-Response Characteristics of SB-MOSFET
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, J.; Liu, K.; Chen, X.; Shen, D. Recent advances in optoelectronic and microelectronic devices based on ultrawide-bandgap semiconductors. Prog. Quantum Electron. 2022, 83, 100397. [Google Scholar] [CrossRef]
- Cai, Q.; You, H.; Guo, H.; Wang, J.; Liu, B.; Xie, Z.; Chen, D.; Lu, H.; Zheng, Y.; Zhang, R. Progress on AlGaN-based solar-blind ultraviolet photodetectors and focal plane arrays. Light-Sci. Appl. 2021, 10, 94. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Tebeest, D.O.; Teng, P.S.; Fabellar, N.G. Simulation studies on risk analysis of rice leaf blast epidemics associated with global climate change in several Asian countries. J. Biogeogr. 1995, 22, 673–678. [Google Scholar] [CrossRef]
- Doh, J.G.; Lee, J.U.; Ahn, J.H.; Kim, S.S. Evaluation of lithographic performance of extreme ultra violet mask using coherent scattering microscope. J. Vac. Sci. Technol. B 2012, 30, 06F504. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, D.; Xu, W.; Pan, D.; Ren, F.; Chen, D.; Zhang, R.; Zheng, Y.; Lu, H. High-Performance 4H-SiC Schottky Photodiode With Semitransparent Grid-Electrode for EUV Detection. IEEE Photonics Technol. Lett. 2020, 32, 791–794. [Google Scholar] [CrossRef]
- Malinowski, P.E.; Duboz, J.Y.; Moor, P.D.; John, J.; Minoglou, K.; Srivastava, P.; Creten, Y.; Torfs, T.; Putzeys, J.; Semond, F.; et al. 10 μm Pixel-to-Pixel Pitch Hybrid Backside Illuminated AlGaN-on-Si Imagers for Solar Blind EUV Radiation Detection. In Proceedings of the IEEE International Electron Devices Meeting, San Francisco, CA, USA, 6–8 December 2010; pp. 348–351. [Google Scholar]
- Romijin, J.; Vollebregt, S.; Middelburg, L.M.; Mansouri, B.E.; Zeijl, H.W.V.; May, A.; Erlbacher, T.; Leijtens, J.; Zhang, G.; Sarro, P.M. Integrated 64 pixel UV image sensor and readout in a silicon carbide CMOS technology. Microsyst. Nanoeng. 2022, 8, 114. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Huo, F.; Zheng, L. Solar-blind ultraviolet optical system design for missile warning. In Selected Papers from Conferences of the Photoelectronic Technology Committee of the Chinese Society of Astronautics 2014; SPIE: Philadelphia, PA, USA; p. 95210X–1.
- Koo, Y.D.; Kim, K.H.; Chang, W.H.; Jeong, J.H. A Study on Effective Aircraft Survivability Equipments. Korean Soc. Aeronaut. Space Sci. 2018, 1351–1353. [Google Scholar]
- Mullenders, L.H.F. Solar UV damage to cellular DNA: From mechanisms to biological effects. Photochem. Photobiol. Sci. 2018, 17, 1842–1852. [Google Scholar] [CrossRef]
- Zhang, L.; Li, B.; Li, H.; Gu, G.; Wang, X. Singal-to-noise ratio analysis based on different space remote sensing instruments. IEEE Photonics J. 2023, 1–12. [Google Scholar]
- Lin, S.; Lin, T.; Wang, W.; Liu, C.; Ding, Y. High Performance GaN-Based Ultraviolet Photodetector via Te/Metal Electrodes. MDPI Mater. 2023, 16, 4569. [Google Scholar] [CrossRef]
- Khan, F.; Khan, W.; Kim, S.D. High-Perfromance Ultraviolet Light Detection Using Nano-Scale-Fin Isolation AlGaN/GaN Heterostructures with ZnO Nanorods. Nanomaterials 2019, 9, 440. [Google Scholar] [CrossRef] [PubMed]
- Chi, P.F.; Lin, F.W.; Lee, M.L.; Sheu, J.K. High-Responsivity Solar-Blind Photodetectors Formed by Ga2O3/p-GaN Bipolar Heterojunctions. ACS Photonics 2022, 9, 1002–1007. [Google Scholar] [CrossRef]
- Lee, C.J.; Won, C.H.; Lee, J.H.; Hahm, S.H.; Park, H.S. Selectively Enhanced UV-A Photoresponsivity of a GaN MSM UV Photodetector with a Step-Graded AlxGa1−xN Buffer Layer. Sensors 2017, 17, 1684. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Alfaraj, N.; Subedi, R.C.; Liang, J.W.; Alatawi, A.A.; Alhamoud, A.A.; Ebaid, M.; Alias, M.S.; Ng, T.K.; Ooi, B.S. III-nitride nanowires on unconventional substrates: From materials to optoelectronic device applications. Prog. Quantum Electron 2018, 61, 1–31. [Google Scholar] [CrossRef]
- Lee, C.J.; Won, C.H.; Bae, M.H.; Shin, J.K.; Lee, J.H.; Hahm, S.H. Hybrid UV Active Pixel Sensor Implemented Using GaN MSM UV Sensor and Si-Based Circuit. IEEE Sens. J. 2015, 15, 5071–5074. [Google Scholar] [CrossRef]
- Lee, C.J.; Won, C.H.; Lee, J.H.; Hahm, S.H.; Park, H.S. GaN-Based Ultraviolet Passive Pixel Sensor on Silicon (111) Substrate. Sensors 2019, 19, 1051. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y. Influence of N-vacancy on the electronic and optical properties of bulk GaN from first-principles investigations. Int. J. Energy Res. 2021, 45, 15512–15520. [Google Scholar] [CrossRef]
- Tatarczak, P.; Turski, H.; Korona, K.P.; Grzanka, E.; Skierbiszewski, C.; Wysmolek, A. Optical porperties of N-polar GaN: The possible role of nitrogen vacancy-related defects. Appl. Surf. Sci. 2021, 566, 150734. [Google Scholar] [CrossRef]
- Furukawa, M.; Uenuma, M.; Ishikawa, Y.; Uraoka, Y. Evaluate Fixed Charge and Oxide-Trapped Charge on SiO2/GaN Metal-Oxide-Semiconductor Structure Before and After Postannealing. Phys. Status Solidi 2020, 257, 1900444. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, J.; Zhao, D.; Zhang, Y.; Liu, Z.; Liang, F.; Chen, P. Role of Vacancy Defects in Reducing the Responsivity of AlGaN Schottky Barrier Ultraviolet Detectors. Nanomaterials 2022, 12, 3148. [Google Scholar] [CrossRef]
- Kublitski, J.; Hofacker, A.; Boroujeni, B.K.; Benduhn, J.; Nikolis, V.C.; Kaiser, C.; Spoltore, D.; Kleemann, H.; Fischer, A.; Ellinger, F.; et al. Reverse dark current in organic photodetectors and the major role of traps as source of noise. Nat. Commun. 2021, 12, 551. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.T.; Fowler, B.; Gamal, A.E. Analysis of Temporal Noise in CMOS Photodiode Active Pixel Sensor. IEEE J. Solid-State Circuits 2001, 36, 92–101. [Google Scholar] [CrossRef]
- Pain, B.; Cunningham, T.; Hancock, B.; Wrigley, C.; Sun, C. Excess noise and dark current mechanisms in CMOS imagers. In Proceedings of the IEEE Workshop on CCD’s and Advanced Image Sensors, Karuizawa, Nagano, Japan, 9–11 June 2005. [Google Scholar]
- Brouk, I.; Nemirovsky, A.; Nemirovsky, Y. Analysis of Noise in CMOS Image Sensor. In Proceedings of the 2008 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems, Tel-Aviv, Israel, 13–14 May 2008; pp. 1–8. [Google Scholar]
- Watanable, T.; Park, J.H.; Aoyama, S.; Isobe, K.; Kawahito, S. Effects of Negative-Bias Operation and Optical Stress on Dark Current in CMOS Image Sensors. IEEE Trans. Electron Devices 2010, 57, 1512–1518. [Google Scholar] [CrossRef]
- Lee, H.B.; Cho, H.I.; An, H.S.; Bae, Y.H.; Lee, M.B.; Lee, J.H.; Hahm, S.H. A Normally Off GaN n-MOSFET With Schottky-Barrier Source and Drain on a Si-Auto-Doped p-GaN/Si. IEEE Electron Device Lett. 2006, 27, 81–83. [Google Scholar]
- Hong, S.G.; Zagni, N.; Choo, S.H.; Liu, N.; Baek, S.H.; Bala, A.; Yoo, H.C.; Kang, B.H.; Kim, H.J.; Yun, H.J.; et al. Highly sensitive active pixel image sensor array driven by large-area bilayer MoS2 transistor circuitry. Nat. Commun. 2021, 12, 3559. [Google Scholar] [CrossRef] [PubMed]
- Silvaco Inc. Atlas User’s Manual; Silvaco Inc.: Santa Clara, CA, USA, 2019. [Google Scholar]
- Look, D.C. Defect-related Donors, Acceptors, and Traps in GaN. Phys. Status Solidi 2001, 228, 293–302. [Google Scholar] [CrossRef]
- Zhang, Z.; Arehart, A.R.; Cinkilic, E.; Chen, J.; Zhang, E.X.; Fleetwood, D.M.; Schrimpf, R.D.; McSkimming, B.; Speck, J.S.; Ringel, S.A. Impact of proton irradiation on deep level states in n-GaN. Appl. Phys. Lett. 2013, 103, 042102. [Google Scholar] [CrossRef]
- Haller, C.; Carlin, J.F.; Jacopin, G.; Liu, W.; Martin, D.; Butté, R.; Grandjean, N. GaN surface as the source of non-radiative defects in InGaN/GaN quantum wells. Appl. Phys. Lett. 2018, 113, 111106. [Google Scholar] [CrossRef]
- Rebey, A.; Boufaden, T.; Jani, B.E. In situ optical monitoring of the decomposition of GaN thin films. J. Cryst. Growth 1999, 203, 12–17. [Google Scholar] [CrossRef]
- Koleske, D.D.; Wickenden, A.E.; Henry, R.L.; Culbertson, J.C.; Twigg, M.E. GaN decomposition in H2 and N2 at MOVPE temperatures and pressures. J. Cryst. Growth 2001, 223, 466–483. [Google Scholar] [CrossRef]
- Arehart, A.R.; Homan, T.; Wong, M.H.; Poblenz, C.; Speck, J.S.; Ringel, S.A. Impact of N- and Ga-face polarity on the incorporation of deep levels in n-type GaN grown by molecular beam epitaxy. Appl. Phys. Lett. 2010, 96, 242112. [Google Scholar] [CrossRef]
- Hierro, A.; Kwon, D.; Ringel, S.A.; Hansen, M.; Speck, J.S.; Mishra, U.K.; DenBaars, S.P. Optically and thermally detected deep levels in n-type Schottky and p+-n GaN diodes. Appl. Phys. Lett. 2000, 76, 3064–3066. [Google Scholar] [CrossRef]
- Wright, A.F. Substitutional and interstitial carbon in wurtzite GaN. J. Appl. Phys. 2002, 92, 2575–2585. [Google Scholar] [CrossRef]
- Armstrong, A.; Arehart, A.R.; Moran, B.; DenBaars, S.P.; Mishra, U.K.; Speck, J.S.; Ringel, S.A. Impact of carbon on trap states in n-type GaN grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 2004, 84, 374–376. [Google Scholar] [CrossRef]
- Huang, F.; Wang, Z.; Chu, C.; Liu, Q.; Li, Y.; Xin, Z.; Zhang, Y.; Sun, Q.; Zhang, Z.H. MIS-Based GaN Schottky Barrier Diodes: Interfacial Conditions on the Reverse and Forward Properties. IEEE Trans. Electron Devices 2022, 69, 5522–5528. [Google Scholar] [CrossRef]
- Arehart, A.R.; Sasikumar, A.; Via, G.D.; Winningham, B.; Poling, B.; Heller, E.; Ringel, S.A. Spatially-discriminating trap characteriszation methods for HEMTs and their application to RF-stressed AlGaN/GaN HEMTs. In Proceedings of the 2010 International Electron Devices Meeting, San Francisco, CA, USA, 6–8 December 2010; pp. 464–467. [Google Scholar]
- Sugawara, K.; Kotani, J.; Hashizume, T. Near-midgap deep levels in Al0.26Ga0.74N grown by metal-organic chemical vapor deposition. Appl. Phys. Lett. 2009, 94, 152106. [Google Scholar] [CrossRef]
- Arehart, A.R.; Allerman, A.A.; Ringel, S.A. Electrical characterization of n-type Al0.30Ga0.70N Schottky diodes. J. Appl. Phys. 2011, 109, 114506. [Google Scholar] [CrossRef]
- Eller, B.S.; Yang, J.; Nemanich, R.J. Polarization Effects of GaN and AlGaN: Polarization Bound Charge, Band Bending, and Electronic Surface States. J. Electron Mater. 2014, 43, 4560–4568. [Google Scholar] [CrossRef]
- Sayed, I.; Liu, W.; Chan, S.; Gupta, C.; Guidry, M.; Li, H.; Keller, S.; Mishra, U.K. Net negative fixed interface charge for Si3N4 and SiO2 grown in situ on 000-1 N-polar GaN. Appl. Phys. Lett. 2019, 115, 032103. [Google Scholar] [CrossRef]
- Esposto, M.; Krishnamoorthy, S.; Nath, D.N.; Bajaj, S.; Hung, T.H.; Rajan, S. Electrical properties of atomic layer deposited aluminum oxide on gallium nitride. Appl. Phys. Lett. 2011, 99, 133503. [Google Scholar] [CrossRef]
- Gray, P.V.; Brown, D.M. Density of SiO2Si Interface States. Appl. Phys. Lett. 1966, 8, 31–33. [Google Scholar] [CrossRef]
- Fleetwood, D.M. Long-term annealing study of midgap interface-trap charge neutrality. Appl. Phys. Lett. 1992, 60, 2883–2885. [Google Scholar] [CrossRef]
- Pierret, R.F. Advanced Semiconductor Fundamentals; Pearson Education: London, UK, 1996. [Google Scholar]
- Lin, Y.J. Application of the thermionic field emission model in the study of a Schottky barrier of Ni on p-GaN from current-voltage measurements. Appl. Phys. Lett. 2005, 86, 122109. [Google Scholar] [CrossRef]
- Ahaitouf, A.; Srour, H.; Ould Saad Hamady, S.; Fressengeas, N.; Ougazzaden, A.; Salvestrini, J.P. Interface state effects in GaN Schottky diodes. Thin Solid Film. 2012, 522, 345–351. [Google Scholar] [CrossRef]
- Kim, D.K.; Kim, D.S.; Chang, S.J.; Lee, C.J.; Bae, Y.H.; Cristoloveanu, S.; Lee, J.H.; Hahm, S.H. Performance of GaN Metal-Oxide-Semiconductor Field-Effect Transistor with Regrown n+-Source/Drain on a Selectively Etched GaN. JPN J. Appl. Phys. 2013, 52, 061001. [Google Scholar] [CrossRef]
- Suriyavejwongs, P.; Leelarasmee, E.; Pora, W. A Zero Bias Pixel Sensor and its Zero-Bias Column Buffer-Direct-Injection Circuit. Eng. J. 2017, 21, 179–191. [Google Scholar] [CrossRef]
- Kasap, S.O. Optoelectronics and Photonics Principles and Practices; Pearson Education: London, UK, 2013. [Google Scholar]
Device Parameter | Reported Values [28] | Simulated Values |
---|---|---|
S-D Schottky barrier [eV] | 0.2–0.3 | 0.3 |
SiO2 thickness [nm] | 20 | 20 |
p-GaN carrier density [cm−3] | 8.6 × 1017 | 2.7 × 1017 |
GaN thickness [μm] | 0.7 | 0.7 |
Gate work function [eV] | 5.0–5.1 | 5.0 |
Gate length [μm] | 10 | 10 |
Gate width [μm] | 30 | 30 |
Position | Distribution | Nature | Origin | Trap Level from Ec | Reported Density [cm−3] | Used Density in This Work [cm−2eV−1] |
---|---|---|---|---|---|---|
Metal/GaN interface (Trap Region A) | Discrete level | Donor | VN * | 0.06 | — | 2.1 1017 cm−3 |
VN or carbon-related | 0.25 | 1.71014 | 7.0 1017 cm−3 | |||
Acceptor | — | 1.5 | 2.41016 | 7.0 1017 cm−3 | ||
VGa, VGa-H complexes | 2.6 | 2.61016 | 1.0 1017 cm−3 | |||
SiO2/GaN interface (Trap Region B) | Gaussian | Donor | VN | 0.06 | — | 2.5 1012 |
VN or carbon-related | 0.25 | 1.71014 | 4.0 1012 | |||
CI * | 1.28 | 1.01014 | 4.2 1011 | |||
CI | 1.35 | 7.21015 | 7.8 1011 | |||
Acceptor | VGa *, VGa-H complexes | 2.6 | 2.61016 | 1.5 1011 | ||
Residual MgGa and C acceptor | 3.22 | 1.31016 | 2.5 1011 | |||
CN * | 3.28 | 3.61016 | 4.0 1011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, B.-J.; Kim, H.-S.; Hahm, S.-H. Interface Trap Effect on the n-Channel GaN Schottky Barrier-Metal–Oxide Semiconductor Field-Effect Transistor for Ultraviolet Optoelectronic Integration. Nanomaterials 2024, 14, 59. https://doi.org/10.3390/nano14010059
Park B-J, Kim H-S, Hahm S-H. Interface Trap Effect on the n-Channel GaN Schottky Barrier-Metal–Oxide Semiconductor Field-Effect Transistor for Ultraviolet Optoelectronic Integration. Nanomaterials. 2024; 14(1):59. https://doi.org/10.3390/nano14010059
Chicago/Turabian StylePark, Byeong-Jun, Han-Sol Kim, and Sung-Ho Hahm. 2024. "Interface Trap Effect on the n-Channel GaN Schottky Barrier-Metal–Oxide Semiconductor Field-Effect Transistor for Ultraviolet Optoelectronic Integration" Nanomaterials 14, no. 1: 59. https://doi.org/10.3390/nano14010059
APA StylePark, B. -J., Kim, H. -S., & Hahm, S. -H. (2024). Interface Trap Effect on the n-Channel GaN Schottky Barrier-Metal–Oxide Semiconductor Field-Effect Transistor for Ultraviolet Optoelectronic Integration. Nanomaterials, 14(1), 59. https://doi.org/10.3390/nano14010059