Heat Transfer Performance of a 3D-Printed Aluminum Flat-Plate Oscillating Heat Pipe Finned Radiator
Abstract
:1. Introduction
2. Structural Design and Experimental System
2.1. Structure Design of the 3D-Printed FOHPFR
2.2. Manufacturing of the 3D-Printed FOHPFR
2.3. Experimental System and Measurement
2.4. Analysis of Measurement Errors
3. Results and Discussion
3.1. Surface Wettability and SEM Characterization of the 3D-Printed FOHPFE
3.2. Performance Improvement Verification of Finned Radiator
3.3. Response Performance of the 3D-Printed FOHPFR
3.4. Heat Transfer Performance Analysis of the 3D-Printed FOHPFR
4. Conclusions
- Compared with the solid finned radiator with the same structural parameters, there is a significant improvement in the thermal performance of the 3D-printed FOHPFR. Given a heating power of 140 W, the minimum heat resistance and the heat source temperature of the 3D-printed FOHPFR are 65.6% and 21.8% lower than those of the solid finned radiator, respectively.
- The starting performance of the flat-plate OHP is essential for the responsiveness of the 3D-printed FOHPFR. With the increase in heating power, the heat source temperature curve of the device shows gradient-like changes, indicating that the 3D-printed FOHPFR performs well in instantaneous heat absorption and steady-state heat transfer.
- An optimal filling ratio of 50% was identified for the vertical 3D-printed FOHPFR, with minimal thermal resistance achieving 0.11 °C/W. Moreover, the 3D-printed FOHPFR demonstrates good adaptability to various operating angles. However, the heat dissipation performance deteriorates to a certain extent when the inclination angle is set to 0°.
- Due to the internal microchannels along with their rough sintered internal surfaces in the 3D-printed FOHPFR, an extensive wetting area and capillary force are provided for the oscillation working fluid, which effectively enhances the heat dissipation capacity of the device.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
3D | three-dimensional |
OHP | oscillating heat pipe |
FOHPFR | flat-plate oscillating heat pipe finned radiator |
SLM | selective laser melting |
DC | direct current |
SEM | scanning electron microscopy |
References
- Kumar Malla, L.; Vempeny, D.T.; Dileep, H.; Dhanalakota, P.; Sinha Mahapatra, P.; Srivastava, P.; Pattamatta, A. Thermal performance comparison of flat plate pulsating heat pipes of different material thermal conductivity using ethanol-water mixtures. Appl. Therm. Eng. 2024, 236, 121475. [Google Scholar] [CrossRef]
- Shi, Y.; Su, L. Study on heat transfer performance of flat plate pulsating heat pipe with graphene oxide at low heating power. J. Phys. Conf. Ser. 2023, 2592, 012002. [Google Scholar] [CrossRef]
- He, Z.; Yan, Y.; Zhang, Z. Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review. Energy 2021, 216, 119223. [Google Scholar] [CrossRef]
- Li, C.; Li, J. A dumbbell-shaped 3D flat plate pulsating heat pipe module augmented by capillarity gradient for high-power server CPU onsite cooling. Energy Convers. Manag. 2023, 292, 117384. [Google Scholar] [CrossRef]
- Chen, P.; Chang, S.; Chiang, K.; Li, J. High power electronic component: Review. Recent Patents Eng. 2008, 2, 174–188. [Google Scholar] [CrossRef]
- Bayram, H.; Koç, N. Experimental investigation of the effects of add-on fan radiators on heat output and indoor air temperature. Case Stud. Therm. Eng. 2023, 50, 103432. [Google Scholar] [CrossRef]
- Bondareva, N.S.; Gibanov, N.S.; Sheremet, M.A. Melting of nano-enhanced PCM inside finned radiator. J. Phys. Conf. Ser. 2018, 1105, 012023. [Google Scholar] [CrossRef]
- Pagliarini, L.; Cattani, L.; Bozzoli, F.; Slobodeniuk, M.; Ayel, V.; Romestant, C.; Bertin, Y.; Rainieria, S. Study on the local heat transfer behaviour in a flat plate pulsating heat pipe. J. Phys. Conf. Ser. 2022, 2177, 012038. [Google Scholar] [CrossRef]
- Dreiling, R.; Zimmermann, S.; Nguyen-Xuan, T.; Schreivogel, P.; di Mare, F. Thermal resistance modeling of flat plate pulsating heat pipes. Int. J. Heat Mass Transf. 2022, 189, 122668. [Google Scholar] [CrossRef]
- Akachi, H. Structure of a Heat Pipe. U.S. Patent 4,921,041A, 1 May 1990. [Google Scholar]
- Pagnoni, F.; Ayel, V.; Romestant, C.; Bertin, Y. Flat plate pulsating heat pipes with and without separating grooves: Experimental investigation on adiabatic length, coolant temperature and orientation. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1139, 012005. [Google Scholar] [CrossRef]
- Cecere, A.; De Cristofaro, D.; Savino, R.; Ayel, V.; Sole-Agostinelli, T.; Marengo, M.; Romestant, C.; Bertin, Y. Experimental analysis of a flat plate pulsating heat pipe with self-rewetting fluids during a parabolic flight campaign. Acta Astronaut. 2018, 147, 454–461. [Google Scholar] [CrossRef]
- Wang, J.; Ma, H.; Zhu, Q. Effects of the evaporator and condenser length on the performance of pulsating heat pipes. Appl. Therm. Eng. 2015, 91, 1018–1025. [Google Scholar] [CrossRef]
- Ji, L.L. Preparation of Nanofluids and Its Application in Pulsating Heat Pipe. Master’s Thesis, Nanjing University of Science and Technology, Nanjing, China, 2014. [Google Scholar]
- Mehta, K.K.; Mehta, N.; Patel, V. Effect of operational parameters on the thermal performance of flat plate oscillating heat pipe. J. Heat Transf. 2019, 141, 121802. [Google Scholar] [CrossRef]
- Shi, W.; Pan, L. Influence of filling ratio and working fluid thermal properties on starting up and heat transferring performance of closed loop plate oscillating heat pipe with parallel channels. J. Therm. Sci. 2017, 26, 73–81. [Google Scholar] [CrossRef]
- Thompson, S.M.; Ma, H.B.; Winholtz, R.A.; Wilson, C. Experimental investigation of miniature three-dimensional flat-plate oscillating heat pip. J. Heat Transf. 2009, 131, 043210. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Y. Fluid flow and heat transfer in flat-plate oscillating heat pipe. Energy Build. 2014, 75, 29–42. [Google Scholar] [CrossRef]
- Chen, X.; Chen, S.; Zhang, Z.; Sun, D.; Liu, X. Heat transfer investigation of a flat-plate oscillating heat pipe with tandem dual channels under nonuniform heating. Int. J. Heat Mass Transf. 2021, 180, 121830. [Google Scholar] [CrossRef]
- Srikrishna, P.; Siddharth, N.; Reddy, S.U.M.; Narasimham, G.S.V.L. Experimental investigation of flat plate closed loop pulsating heat pipe. Heat Mass Transf. 2019, 55, 2637–2649. [Google Scholar] [CrossRef]
- Khandekar, S. Thermofluid dynamic study of flat-plate closed-loop pulsating heat pipes. Microscale Thermophys. Eng. 2003, 6, 303–317. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, S.; Huo, J.; Hu, Y.; Chen, J.; Zhang, W.; Lee, E. Heat transfer characteristics and LED heat sink application of aluminum plate oscillating heat pipes. Appl. Therm. Eng. 2011, 31, 2221–2229. [Google Scholar] [CrossRef]
- Jang, D.S.; Kim, D.; Hong, S.H.; Kim, Y. Comparative thermal performance evaluation between ultrathin flat plate pulsating heat pipe and graphite sheet for mobile electronic devices at various operating conditions. Appl. Therm. Eng. 2019, 149, 1427–1434. [Google Scholar] [CrossRef]
- Wang, H.; Qu, J.; Peng, Y.; Sun, Q. Heat transfer performance of a novel tubular oscillating heat pipe with sintered copper particles inside flat-plate evaporator and high-power LED heat sink application. Energy Convers. Manag. 2019, 189, 215–222. [Google Scholar] [CrossRef]
- Ji, Y.; Xu, C.; Ma, H.; Pan, X. An experimental investigation of the heat transfer performance of an oscillating heat pipe with copper oxide (CuO) microstructure layer on the inner surface. J. Heat Transf. 2013, 135, 074504. [Google Scholar] [CrossRef]
- Hao, T.; Yu, H.; Ma, X.; Lan, Z. Heat transfer enhancement of horizontal oscillating heat pipes with micro-/nanostructured surface. J. Heat Transf. 2020, 142, 072001. [Google Scholar] [CrossRef]
- Qu, J.; Sun, Q.; Wang, H.; Zhang, D.; Yuan, J. Performance characteristics of flat-plate oscillating heat pipe with porous metal-foam wicks. Int. J. Heat Mass Transf. 2019, 137, 20–30. [Google Scholar] [CrossRef]
- Kay, K.E.; McMillin, R.E.; Ferri, J.K. Optimizing continuous emulsification with 3D printing. Chem. Eng. J. 2023, 476, 146590. [Google Scholar] [CrossRef]
- Arai, T.; Kawaji, M. Thermal performance and flow characteristics in additive manufactured polycarbonate pulsating heat pipes with Novec 7000. Appl. Therm. Eng. 2021, 197, 117273. [Google Scholar] [CrossRef]
- Chang, C.; Yang, Y.; Pei, L.; Han, Z.; Xiao, X.; Ji, Y. Heat transfer performance of 3D-printed aluminium flat-plate oscillating heat pipes for the thermal management of LEDs. Micromachines 2022, 13, 1949. [Google Scholar] [CrossRef]
- Hosoda, M.; Nishio, S.; Shirakashi, R. Study of meandering closed-loop heat-transport device (Vapor-plug propagation phenomena). JSME Int. J. Ser. B Fluids Therm. Eng. 1999, 42, 737–744. [Google Scholar] [CrossRef]
- Błasiak, P.; Opalski, M.; Parmar, P.; Czajkowski, C.; Pietrowicz, S. The thermal—Flow processes and flow pattern in a pulsating heat pipe—Numerical modelling and experimental validation. Energies 2021, 14, 5952. [Google Scholar] [CrossRef]
- Kammuang-lue, N.; Sakulchangsatjatai, P.; Terdtoon, P. Thermal performance of various adiabatic section lengths of closed-loop pulsating heat pipe designed for energy recovery applications. Energy Rep. 2022, 8, 731–737. [Google Scholar] [CrossRef]
- Murr, L.E.; Martinez, E.; Amato, K.N.; Gaytan, S.M.; Hernandez, J.; Ramirez, D.A.; Shindo, P.W.; Medina, F.; Wicker, R.B. Fabrication of metal and alloy components by additive manufacturing: Examples of 3D materials science. J. Mater. Res. Technol. 2012, 1, 42–54. [Google Scholar] [CrossRef]
- Yu, C.; Ji, Y.; Li, Y.; Liu, Z.; Chu, L.; Kuang, H.; Wang, Z. A three-dimensional oscillating heat pipe filled with liquid metal and ammonia for high-power and high-heat-flux dissipation. Int. J. Heat Mass Transf. 2022, 194, 123096. [Google Scholar] [CrossRef]
- Chang, C.; Han, Z.; He, X.; Wang, Z.; Ji, Y. 3D printed aluminum flat heat pipes with micro grooves for efficient thermal management of high power LEDs. Sci. Rep. 2021, 11, 8255. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Liu, G.; Ma, H.; Li, G.; Sun, Y. An experimental investigation of heat transfer performance in a polydimethylsiloxane (PDMS) oscillating heat pipe. Appl. Therm. Eng. 2013, 61, 690–697. [Google Scholar] [CrossRef]
- Pakkanen, J.; Calignano, F.; Trevisan, F.; Lorusso, M.; Ambrosio, E.P.; Manfredi, D.; Fino, P. Study of internal channel surface roughnesses manufactured by selective laser melting in aluminum and titanium alloys. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2016, 47, 3837–3844. [Google Scholar] [CrossRef]
- Qu, W.; Ma, H.B. Theoretical analysis of startup of a pulsating heat pipe. Int. J. Heat Mass Transf. 2007, 50, 2309–2316. [Google Scholar] [CrossRef]
Name | Size (mm) |
---|---|
Diameter of OHP | 2 |
Fin width | 50 |
Fin height | 90 |
Fin spacing | 5.7 |
Base thickness | 5 |
Base area | 50 × 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, X.; He, Y.; Wang, Q.; Yang, Y.; Chang, C.; Ji, Y. Heat Transfer Performance of a 3D-Printed Aluminum Flat-Plate Oscillating Heat Pipe Finned Radiator. Nanomaterials 2024, 14, 60. https://doi.org/10.3390/nano14010060
Xiao X, He Y, Wang Q, Yang Y, Chang C, Ji Y. Heat Transfer Performance of a 3D-Printed Aluminum Flat-Plate Oscillating Heat Pipe Finned Radiator. Nanomaterials. 2024; 14(1):60. https://doi.org/10.3390/nano14010060
Chicago/Turabian StyleXiao, Xiu, Ying He, Qunyi Wang, Yaoguang Yang, Chao Chang, and Yulong Ji. 2024. "Heat Transfer Performance of a 3D-Printed Aluminum Flat-Plate Oscillating Heat Pipe Finned Radiator" Nanomaterials 14, no. 1: 60. https://doi.org/10.3390/nano14010060
APA StyleXiao, X., He, Y., Wang, Q., Yang, Y., Chang, C., & Ji, Y. (2024). Heat Transfer Performance of a 3D-Printed Aluminum Flat-Plate Oscillating Heat Pipe Finned Radiator. Nanomaterials, 14(1), 60. https://doi.org/10.3390/nano14010060