Nanocrystalline FeMnO3 Powder as Catalyst for Combustion of Volatile Organic Compounds
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Structure and Morphology
3.2. Catalytic Activity
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Masatake, H. When gold is not noble: Catalysis by nanoparticles. Chem. Rec. 2003, 3, 75–87. [Google Scholar]
- Suzuki, Y.; Horii, Y.; Kasagi, N. Microcatalytic combustor with tailored Pt/Al2O3 films. In Proceedings of the 3rd International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (Power MEMS 2003), Makuhari, Japan, 4–5 December 2003; pp. 23–26. [Google Scholar]
- Pecchi, G.; Reyes, P.; Figueroa, A.; Fierro, J.L.G. Catalytic combustion on toluene on Pd-Cu/SiO2 catalysts. Bol. Soc. Chil. Quím. 2000, 45, 213–218. [Google Scholar] [CrossRef]
- Andreeva, D.; Petrova, P.; Ilieva, L.; Sobczak, J.W.; Abrashev, M.V. Design of new gold catalysts supported on mechanochemically activated ceria-alumina, promoted by molybdena for complete benzene oxidation. Appl. Catal. B Environ. 2008, 77, 364–372. [Google Scholar] [CrossRef]
- Persson, K.; Ersson, A.; Jansson, K.; Iverlund, N.; Jaras, S. Influence of co-metals on bimetallic palladium catalysts for methane combustion. J. Catal. 2005, 231, 139–150. [Google Scholar] [CrossRef]
- Svensson, E.E. Nanomaterials for High-Temperature Catalytic Combustion. Ph.D. Thesis, KTH Chemical Science and Engineering, Stockholm, Sweden, 2007. [Google Scholar]
- Haber, J.; Mielczarska, E.; Turek, W. Oxide catalyst for the combustion of organic compounds in industrial waste gases. React. Kinet. Catal. Lett. 1987, 34, 45–49. [Google Scholar] [CrossRef]
- Fino, D.; Specchia, V. Compositional and structural optimal design of a nanostructured diesel-soot combustion catalyst for a fast-regenerating trap. Chem. Eng. Sci. 2004, 59, 4825–4831. [Google Scholar] [CrossRef]
- Tang, Y.; Lin, B. Perovskite-Type Rare Earth Complex Oxide Combustion Catalysts. U.S. Patent 5242881, 7 September 1993. [Google Scholar]
- Zhang, R.; Alamdari, H.; Bassir, M.; Kaliaguine, S. Optimization of mixed Ag catalysts for catalytic conversions of NO and C3H6. Int. J. Chem. React. Eng. 2007, 5, A70. [Google Scholar] [CrossRef]
- Huang, H.F.; Sun, Z.; Lu, H.F.; Shen, L.Q.; Chen, Y.F. Study on the poisoning tolerance and stability of perovskite catalysts for catalytic combustion of volatile organic compounds. React. Kinet. Mech. Catal. 2010, 101, 417–427. [Google Scholar] [CrossRef]
- Tomatis, M.; Xu, H.H.; He, J.; Zhang, X.D. Recent development of catalysts for removal of volatile organic compounds in flue gas by combustion: A Review. J. Chem. 2016, 2016, 8324826. [Google Scholar] [CrossRef]
- Shalva, G. Cigarette Wrapper with Nanoparticle Spinel Ferrite Catalyst and Methods of Making Same. International Patent Publication WO/2005/039330, 6 May 2005. [Google Scholar]
- Lin, B.; Zhang, W.; Liu, Y.; Li, S.; Li, N. Cu-Al/Ce-Al Complex Oxide Combustion Catalysts, Their Preparation and Use. U.S. Patent 6596249, 22 July 2003. [Google Scholar]
- Doroftei, C.; Leontie, L. Synthesis and characterization of some nanostructured composite oxides for low temperature catalytic combustion of dilute propane. RSC Adv. 2017, 7, 27863–27871. [Google Scholar] [CrossRef]
- Doroftei, C.; Popa, P.D.; Rezlescu, N. The influence of the heat treatment on the humidity sensitivity of magnesium nanoferrite. J. Optoelectron. Adv. Mater. 2010, 12, 881–884. [Google Scholar]
- Doroftei, C. Formaldehyde sensitive Zn-doped LPFO thin films obtained by rf sputtering. Sens. Actuators B Chem. 2016, 231, 793–799. [Google Scholar] [CrossRef]
- Doroftei, C.; Popa, P.D.; Rezlescu, E.; Rezlescu, N. Nanocrystalline SrMnO3 powder as catalyst for hydrocarbon combustion. J. Alloys Compd. 2014, 584, 195–198. [Google Scholar] [CrossRef]
- Rezlescu, N.; Rezlescu, E.; Popa, P.D.; Doroftei, C.; Ignat, M. Nanostructured GdAlO3 perovskite, a new possible catalyst for combustion of volatile organic compounds. J. Mater. Sci. 2013, 48, 4297–4304. [Google Scholar] [CrossRef]
- Rezlescu, N.; Rezlescu, E.; Popa, P.D.; Doroftei, C.; Ignat, M. Partial substitution of manganese with cerium in SrMnO3 nanoperovskite catalyst. Effect of the modification on the catalytic combustion of dilute acetone. Mater. Chem. Phys. 2016, 182, 332–337. [Google Scholar] [CrossRef]
- Nikolica, M.V.; Krsticb, J.B.; Labusc, N.J.; Lukovica, M.D.; Dojcinovica, M.P.; Radovanovicd, M.; Tadic, N.B. Structural, morphological and textural properties of iron manganite (FeMnO3) thick films applied for humidity sensing. Mater. Sci. Eng. B 2020, 257, 114547. [Google Scholar] [CrossRef]
- Rayaprol, S.; Kaushik, S.D. Magnetic and magnetocaloric properties of FeMnO3. Ceram. Int. 2015, 41, 9567–9571. [Google Scholar] [CrossRef]
- Rayaprol, S.; Ribeiro, R.A.P.; Singh, K.; Reddy, V.R.; Kaushik, S.D.; de Lazaro, S.R. Experimental and theoretical interpretation of magnetic ground state of FeMnO3. J. Alloys Compd. 2019, 774, 290–298. [Google Scholar] [CrossRef]
- Available online: https://www.cryst.ehu.es/magndata/index.php?index=0.508 (accessed on 19 January 2024).
- Rayaprol, S.; Kaushik, S.D.; Babu, P.D.; Siruguri, V. Structureand magnetism of FeMnO3. AIP Conf. Proc. 2013, 1512, 1132–1133. [Google Scholar]
- Vasiljevic, Z.Z.; Dojcinovic, M.P.; Krstic, J.B.; Ribic, V.; Tadic, N.B.; Ognjanovic, M.; Auger, S.; Vidic, J.; Nikolic, M.V. Synthesis and antibacterial activity of iron manganite (FeMnO3) particles against the environmental bacterium Bacillus subtilis. RSC Adv. 2020, 10, 13879–13888. [Google Scholar] [CrossRef]
- Battiston, A.A.; Bitter, J.H.; Heijboer, W.M.; de Groot, F.M.F.; Koningsberger, D.C. Reactivity of Fe-binuclear complexes in over-exchanged Fe/ZSM5 studied by in situ XAFS spectroscopy. J. Catal. 2003, 215, 279–293. [Google Scholar] [CrossRef]
- Han, Y.; Xu, J.; Xie, W.; Wang, Z.; Hu, P. Comprehensive Study of Oxygen Vacancies on the Catalytic Performance of ZnO for CO/H2 Activation Using Machine Learning-Accelerated First-Principles Simulations. ACS Catal. 2023, 13, 5104–5113. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Xu, W.; Wang, W.; Liu, Y.; Cui, B.; Guo, X. Facile synthesis of specific FeMnO3 hollow sphere/graphene composites and their superior electrochemical energy storage performances for supercapacitor. J. Power Sources 2014, 248, 465–473. [Google Scholar] [CrossRef]
- Lobo, L.S.; Rubankumar, A. Investigation on structural and electrical properties of FeMnO3 synthesized by sol-gel method. Ionics 2019, 25, 1341–1350. [Google Scholar] [CrossRef]
- Bin, H.; Yao, Z.; Zhu, S.; Zhu, C.; Pan, H.; Chen, Z.; Wolverton, C.; Zhang, D. A high-performance anode material based on FeMnO3/graphene composite. J. Alloys Compd. 2017, 695, 1223–1230. [Google Scholar] [CrossRef]
- Audi, A.A.; Sherwood, P. Valence-band X-ray photoelectron spectroscopic studies of manganese and its oxides interpreted by cluster and band structure calculations. Surf. Interface Anal. 2002, 33, 274–282. [Google Scholar] [CrossRef]
- Tang, Q.; Jiang, L.; Liu, J.; Wang, S.; Sun, G. Effect of surface manganese valence of manganese oxides on the activity of the oxygen reduction reaction in alkaline media. ACS Catal. 2014, 4, 457–463. [Google Scholar] [CrossRef]
- Deng, Q.; Li, X.; Peng, Z.; Long, Y.; Xiang, L.; Cai, T. Catalytic performance and kinetics of Au/γ-Al2O3 catalysts for low-temperature combustion of light alcohols. Treans. Nonferrous Met. Soc. China 2010, 20, 437–442. [Google Scholar] [CrossRef]
- Avgouropoulos, G.; Oikonomopoulos, E.; Kanistras, D.; Ioannides, T. Complete oxidation of ethanol over alkali-promoted Pt/Al2O3 catalysts. Appl. Catal. B 2006, 65, 62–69. [Google Scholar] [CrossRef]
- Ivanov, D.V.; Pinaeva, L.G.; Sadovskaya, E.M.; Isupova, L.A. Influence of the mobility of oxygen on the reactivity of La1-xSr(x)MnO3 perovskites in methane oxidation. Kinet. Catal. 2011, 52, 401–408. [Google Scholar] [CrossRef]
- Doroftei, C. Nanostructured Perovskites for Catalytic Combustion. In Nanostructures Book; IntechOpen: London, UK, 2019; Volume 5, pp. 75–93. ISBN 978-1-78985-739-9. [Google Scholar]
- Feng, S.; Yang, W.; Wang, Z. Synthesis of porous NiFe2O4 microparticles and its catalytic properties for methane combustion. Mater. Sci. Eng. B 2011, 176, 1509–1512. [Google Scholar] [CrossRef]
- Hea, L.; Fan, Y.; Bellettre, J.; Yue, J.; Luo, L. A review on catalytic methane combustion at low temperatures: Catalysts, mechanisms, reaction conditions and reactor designs. Renew. Sustain. Energy Rev. 2020, 119, 109589. [Google Scholar] [CrossRef]
- Milt, V.G.; Ulla, M.A.; Lombardo, E.A. Cobalt-containing catalysts for the high-temperature combustion of methane. Catal. Lett. 2000, 65, 67–73. [Google Scholar] [CrossRef]
- Milt, V.G.; Spretz, R.; Ulla, M.A.; Lombardo, E.A.; Garcia Fierro, J.L. The nature of active sites for the oxidation of methane on La-based perovskites. Catal. Lett. 1996, 42, 57–63. [Google Scholar] [CrossRef]
- Hammami, R.; Aissa, S.B.; Batis, H. Effects of thermal treatment on physico-chemical and catalytic properties of lanthanum manganite LaMnO3+y. Appl. Catal. A Gen. 2009, 353, 145–153. [Google Scholar] [CrossRef]
- Cicmanec, P.; Kotera, J.; Vaculík, J.; Bulánek, R. Influence of Substrate Concentration on Kinetic Parameters of Ethanol Dehydration in MFI and CHA Zeolites and Relation of These Kinetic Parameters to Acid–Base Properties. Catalysts 2022, 12, 51. [Google Scholar] [CrossRef]
- Song, K.S.; Klvana, D.; Kirchnerova, J. Kinetics of propane combustion over La0.66Sr0.34Ni0.3Co0.7O3 perovskite. Appl. Catal. A 2001, 213, 113–121. [Google Scholar] [CrossRef]
- Cimino, S.; Pirone, R.; Lisi, L. Zirconia supported LaMnO3 monoliths for the catalytic combustion of methane. Appl. Catal. B 2002, 35, 243–254. [Google Scholar] [CrossRef]
- Baiker, A.; Marti, P.E.; Keusch, P.; Fritsch, E.; Reller, A. Influence of the A-site cation in ACoO3 (A = La, Pr, Nd, and Gd) perovskite-type oxides on catalytic activity for methane combustion. J. Catal. 1994, 146, 268–276. [Google Scholar] [CrossRef]
VOCs/. FeMnO3 | Conversion at 290 °C (%) | Conversion at 500 °C (%) | Reaction Rate * (µmol s−1 m−2) | Activation Energy ** (KJ/mol) |
---|---|---|---|---|
Ethanol | 95.43 | 97.58 | 14.25 × 10−2 | 195.248 |
Methanol | 74.09 | 97.05 | 6.27 × 10−2 | 99.816 |
Toluene | 70.25 | 97.91 | 5.55 × 10−2 | 19.477 |
Xylene | 20.63 | 59.00 | 1.07 × 10−2 | 18.232 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doroftei, C. Nanocrystalline FeMnO3 Powder as Catalyst for Combustion of Volatile Organic Compounds. Nanomaterials 2024, 14, 521. https://doi.org/10.3390/nano14060521
Doroftei C. Nanocrystalline FeMnO3 Powder as Catalyst for Combustion of Volatile Organic Compounds. Nanomaterials. 2024; 14(6):521. https://doi.org/10.3390/nano14060521
Chicago/Turabian StyleDoroftei, Corneliu. 2024. "Nanocrystalline FeMnO3 Powder as Catalyst for Combustion of Volatile Organic Compounds" Nanomaterials 14, no. 6: 521. https://doi.org/10.3390/nano14060521
APA StyleDoroftei, C. (2024). Nanocrystalline FeMnO3 Powder as Catalyst for Combustion of Volatile Organic Compounds. Nanomaterials, 14(6), 521. https://doi.org/10.3390/nano14060521